1932

Abstract

Potentially noxious stimuli are sensed by specialized nerve cells named nociceptors, which convey nociceptive signals from peripheral tissues to the central nervous system. The spinal dorsal horn and the trigeminal nucleus serve as first relay stations for incoming nociceptive signals. At these sites, nociceptor terminals contact a local neuronal network consisting of excitatory and inhibitory interneurons as well as of projection neurons. Blockade of neuronal inhibition in this network causes an increased sensitivity to noxious stimuli (hyperalgesia), painful sensations occurring after activation of non-nociceptive fibers (allodynia), and spontaneous pain felt in the absence of any sensory stimulation. It thus mimics the major characteristics of chronic pain states. Diminished inhibitory pain control in the spinal dorsal horn occurs naturally, e.g., through changes in the function of inhibitory neurotransmitter receptors or through altered chloride homeo-stasis in the course of inflammation or nerve damage. This review summarizes our current knowledge about endogenous mechanisms leading to diminished spinal pain control and discusses possible ways that could restore proper inhibition through facilitation of fast inhibitory neurotransmission.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010611-134636
2012-02-10
2024-03-29
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-pharmtox-010611-134636
Loading
/content/journals/10.1146/annurev-pharmtox-010611-134636
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error