1932

Abstract

Mitochondria play central roles in energy homeostasis, metabolism, signaling, and apoptosis. Accordingly, the abundance, morphology, and functional properties of mitochondria are finely tuned to meet cell-specific energetic, metabolic, and signaling demands. This tuning is largely achieved at the level of transcriptional regulation. A highly interconnected network of transcription factors regulates a broad set of nuclear genes encoding mitochondrial proteins, including those that control replication and transcription of the mitochondrial genome. The same transcriptional network senses cues relaying cellular energy status, nutrient availability, and the physiological state of the organism and enables short- and long-term adaptive responses, resulting in adjustments to mitochondrial function and mitochondrial biogenesis. Mitochondrial dysfunction is associated with many human diseases. Characterization of the transcriptional mechanisms that regulate mitochondrial biogenesis and function can offer insights into possible therapeutic interventions aimed at modulating mitochondrial function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.physiol.010908.163119
2009-03-17
2024-03-29
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.physiol.010908.163119
Loading
/content/journals/10.1146/annurev.physiol.010908.163119
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error