1932

Abstract

The epithelial sodium channel (ENaC) expressed in aldosterone-responsive epithelial cells of the kidney and colon plays a critical role in the control of sodium balance, blood volume, and blood pressure. In lung, ENaC has a distinct role in controlling the ionic composition of the air-liquid interface and thus the rate of mucociliary transport. Loss-of-function mutations in ENaC cause a severe salt-wasting syndrome in human pseudohypoaldosteronism type 1 (PHA-1). Gain-of-function mutations in ENaC β and γ subunits cause pseudoaldosteronism (Liddle's syndrome), a severe form of salt-sensitive hypertension. This review discusses genetically defined forms of a salt sensitivity and salt resistance in human monogenic diseases and in animal models mimicking PHA-1 or Liddle's syndrome. The complex interaction between genetic factors (ENaC mutations) and the risk factor (salt intake) can now be studied experimentally. The role of single-nucleotide polymorphisms (SNPs) in determining salt sensitivity or salt resistance in general populations is one of the main challenges of the post-genomic era.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.physiol.64.082101.143243
2002-03-01
2024-03-29
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.physiol.64.082101.143243
Loading
/content/journals/10.1146/annurev.physiol.64.082101.143243
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error