1932

Abstract

The formation of the embryonic brain and spinal cord begins as the neural plate bends to form the neural folds, which meet and adhere to close the neural tube. The neural ectoderm and surrounding tissues also coordinate proliferation, differentiation, and patterning. This highly orchestrated process is susceptible to disruption, leading to neural tube defects (NTDs), a common birth defect. Here, we highlight genetic and epigenetic contributions to neural tube closure. We describe an online database we created as a resource for researchers, geneticists, and clinicians. Neural tube closure is sensitive to environmental influences, and we discuss disruptive causes, preventative measures, and possible mechanisms. New technologies will move beyond candidate genes in small cohort studies toward unbiased discoveries in sporadic NTD cases. This will uncover the genetic complexity of NTDs and critical gene-gene interactions. Animal models can reveal the causative nature of genetic variants, the genetic interrelationships, and the mechanisms underlying environmental influences.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120213-092208
2014-11-23
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/genet/48/1/annurev-genet-120213-092208.html?itemId=/content/journals/10.1146/annurev-genet-120213-092208&mimeType=html&fmt=ahah

Literature Cited

  1. Acs N, Bánhidy F, Puhó E, Czeizel AE. 1.  2005. Maternal influenza during pregnancy and risk of congenital abnormalities in offspring. Birth Defects Res. A Clin. Mol. Teratol. 73:12989–96 [Google Scholar]
  2. Aguilar A, Meunier A, Strehl L, Martinovic J, Bonniere M. 2.  et al. 2012. Analysis of human samples reveals impaired SHH-dependent cerebellar development in Joubert syndrome/Meckel syndrome. Proc. Natl. Acad. Sci. USA 109:16951–56 [Google Scholar]
  3. Alvarez IS, Schoenwolf GC. 3.  1992. Expansion of surface epithelium provides the major extrinsic force for bending of the neural plate. J. Exp. Zool. 261:340–48 [Google Scholar]
  4. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. 4.  1999. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23:2185–88 [Google Scholar]
  5. Aran D, Sabato S, Hellman A. 5.  2013. DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes. Genome Biol. 14:3R21 [Google Scholar]
  6. Artama M, Auvinen A, Raudaskoski T, Isojärvi I, Isojärvi J. 6.  2005. Antiepileptic drug use of women with epilepsy and congenital malformations in offspring. Neurology 64:1874–78 [Google Scholar]
  7. Attia M, Murko C, Förster A, Lagger S, Rachez C. 7.  et al. 2011. Interaction between nucleosome assembly protein 1-like family members. J. Mol. Biol. 407:5647–60 [Google Scholar]
  8. Attia M, Rachez C, De Pauw A, Avner P, Rogner UC. 8.  2007. Nap1l2 promotes histone acetylation activity during neuronal differentiation. Mol. Cell. Biol. 27:176093–102 [Google Scholar]
  9. Bannister AJ, Kouzarides T. 9.  2011. Regulation of chromatin by histone modifications. Cell Res. 21:3381–95 [Google Scholar]
  10. Banting GS. 10.  2004. CECR2, a protein involved in neurulation, forms a novel chromatin remodeling complex with SNF2L. Hum. Mol. Genet. 14:4513–24 [Google Scholar]
  11. Barua S, Kuizon S, Chadman KK, Flory MJ, Brown WT, Junaid MA. 11.  2014. Single-base resolution of mouse offspring brain methylome reveals epigenome modifications caused by gestational folic acid. Epigenet. Chromatin 7:11–15 [Google Scholar]
  12. Beaudin AE, Abarinov EV, Malysheva O, Perry CA, Caudill M, Stover PJ. 12.  2011. Dietary folate, but not choline, modifies neural tube defect risk in Shmt1 knockout mice. Am. J. Clin. Nutr. 95:109–14 [Google Scholar]
  13. Beaudin AE, Abarinov EV, Noden DM, Perry CA, Chu S. 13.  et al. 2011. Shmt1 and de novo thymidylate biosynthesis underlie folate-responsive neural tube defects in mice. Am. J. Clin. Nutr. 93:4789–98 [Google Scholar]
  14. Beaudin AE, Stover PJ. 14.  2007. Folate-mediated one-carbon metabolism and neural tube defects: balancing genome synthesis and gene expression. Birth Defects Res. C Embryo Today 81:3183–203 [Google Scholar]
  15. Benedum C, Yazdy M, Mitchell A, Werler M. 15.  2013. Risk of spina bifida and maternal cigarette, alcohol, and coffee use during the first month of pregnancy. Int. J. Environ. Res. Public Health 10:83263–81 [Google Scholar]
  16. Bergman Y, Cedar H. 16.  2013. DNA methylation dynamics in health and disease. Nat. Struct. Mol. Biol. 20:3274–81 [Google Scholar]
  17. Blattler A, Ronan JL, Farnham PJ, Wu W, Crabtree GR. 17.  2013. Cross-talk between site-specific transcription factors and DNA methylation states. J. Biol. Chem. 288:4834287–94 [Google Scholar]
  18. Blom HJ, Shaw GM, den Heijer M, Finnell RH. 18.  2006. Neural tube defects and folate: case far from closed. Nat. Rev. Neurosci. 7:9724–31 [Google Scholar]
  19. Borgel J, Guibert S, Li Y, Chiba H, Schübeler D. 19.  et al. 2010. Targets and dynamics of promoter DNA methylation during early mouse development. Nat. Genet. 42:121093–100 [Google Scholar]
  20. Botto LD, Erickson JD, Mulinare J, Lynberg MC, Liu Y. 20.  2002. Maternal fever, multivitamin use, and selected birth defects: evidence of interaction?. Epidemiology 13:4485–88 [Google Scholar]
  21. Boulet SL, Yang Q, Mai C, Kirby RS, Collins JS. 21.  et al. 2008. Trends in the postfortification prevalence of spina bifida and anencephaly in the United States. Birth Defects Res. A Clin. Mol. Teratol. 82:7527–32 [Google Scholar]
  22. Bu P, Evrard YA, Lozano G, Dent SYR. 22.  2007. Loss of Gcn5 acetyltransferase activity leads to neural tube closure defects and exencephaly in mouse embryos. Mol. Cell. Biol. 27:93405–16 [Google Scholar]
  23. Bultman SJ, Herschkowitz JI, Godfrey V, Gebuhr TC, Yaniv M. 23.  et al. 2007. Characterization of mammary tumors from Brg1 heterozygous mice. Oncogene 27:4460–68 [Google Scholar]
  24. Cao Y, Zhao Z, Eckert RL, Reece EA. 24.  2011. Protein kinase Cβ2 inhibition reduces hyperglycemia-induced neural tube defects through suppression of a caspase 8–triggered apoptotic pathway. Am. J. Obstet. 204:226; e1–5 [Google Scholar]
  25. Cao Y, Zhao Z, Eckert RL, Reece EA. 25.  2012. The essential role of protein kinase Cδ in diabetes-induced neural tube defects. J. Matern. Fetal Neonatal Med. 25:102020–24 [Google Scholar]
  26. Cassidy SB, Schwartz S. 26.  1998. Prader-Willi and Angelman syndromes: disorders of genomic imprinting. Medicine 77:2140–51 [Google Scholar]
  27. Caton PW, Nayuni NK, Kieswich J, Khan NQ, Yaqoob MM, Corder R. 27.  2010. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J. Endocrinol. 205:197–106 [Google Scholar]
  28. 28. Cent. Dis. Control Prev 2011. CDC Birth Defects Data/Statistics Registry. Atlanta, GA: Cent. Dis. Control Prev.
  29. 29. Cent. Dis. Control Prev 1992. Recommendations for the use of folic acid to reduce the number of cases of spina bifida and other neural tube defects. MMWR Recomm. Rec. 41:1–77 [Google Scholar]
  30. 30. Cent. Dis. Control Prev 1998. Use of folic acid–containing supplements among women of childbearing age: United States, 1997. MMWR Morb. Mortal. Wkly. Rep. 47:7131–34 [Google Scholar]
  31. Cervoni N. 31.  2001. Demethylase activity is directed by histone acetylation. J. Biol. Chem. 276:4440778–87 [Google Scholar]
  32. Chambers CD. 32.  2006. Risks of hyperthermia associated with hot tub or spa use by pregnant women. Birth Defects Res. A Clin. Mol. Teratol. 76:8569–73 [Google Scholar]
  33. Chen J, Lai F, Niswander L. 33.  2012. The ubiquitin ligase mLin41 temporally promotes neural progenitor cell maintenance through FGF signaling. Genes Dev. 26:8803–15 [Google Scholar]
  34. Chen X, Shen Y, Gao Y, Zhao H, Sheng X. 34.  et al. 2013. Detection of copy number variants reveals association of cilia genes with neural tube defects. PLoS ONE 8:e54492 [Google Scholar]
  35. Cheng H-L, Mostoslavsky R, Saito S, Manis JP, Gu Y. 35.  et al. 2003. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. USA. 100:1910794–99 [Google Scholar]
  36. Copp AJ, Greene NDE. 36.  2010. Genetics and development of neural tube defects. J. Pathol. 220:2217–30 [Google Scholar]
  37. Correa A, Gilboa SM, Botto LD, Moore CA, Hobbs CA. 37.  et al. 2012. Lack of periconceptional vitamins or supplements that contain folic acid and diabetes mellitus–associated birth defects. Am. J. Obstet. Gynecol. 206:3218; e1–13 [Google Scholar]
  38. Czeizel AE, Dudás I. 38.  1992. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N. Engl. J. Med. 327:261832–35 [Google Scholar]
  39. Davidson CM, Northrup H, King TM, Fletcher JM, Townsend I. 39.  et al. 2008. Genes in glucose metabolism and association with spina bifida. Reprod. Sci. 15:151–58 [Google Scholar]
  40. Deak KL, Siegel DG, George TM, Gregory S, Ashley-Koch A. 40.  et al. 2008. Further evidence for a maternal genetic effect and a sex-influenced effect contributing to risk for human neural tube defects. Birth Defects Res. A Clin. Mol. Teratol. 82:10662–69 [Google Scholar]
  41. De Marco P, Merello E, Calevo MG, Mascelli S, Pastorino D. 41.  et al. 2011. Maternal periconceptional factors affect the risk of spina bifida–affected pregnancies: an Italian case-control study. Child's Nerv. Syst. 27:71073–81 [Google Scholar]
  42. De Wals P, Tairou F, Van Allen MI, Uh S-H, Lowry RB. 42.  et al. 2007. Reduction in neural-tube defects after folic acid fortification in Canada. N. Engl. J. Med. 357:2135–42 [Google Scholar]
  43. Dreier JW, Andersen A-MN, Berg-Beckhoff G. 43.  2014. Systematic review and meta-analyses: fever in pregnancy and health impacts in the offspring. Pediatrics 133:3e674–88 [Google Scholar]
  44. Duong HT, Shahrukh Hashmi S, Ramadhani T, Canfield MA, Scheuerle A. 44.  et al. 2011. Maternal use of hot tub and major structural birth defects. Birth Defects Res. A Clin. Mol. Teratol. 91:9836–41 [Google Scholar]
  45. Edwards MJ, Saunders RD, Shiota K. 45.  2003. Effects of heat on embryos and foetuses. Int. J. Hyperthermia 19:3295–324 [Google Scholar]
  46. 46. FDA 1996. Food Standards: Amendment of Standards of Identity for Enriched Grain Products to Require Addition of Folic Acid 61 Washington, DC: FDA
  47. Feil R, Waterland RA, Fraga MF, Jirtle RL. 47.  2012. Epigenetics and the environment: emerging patterns and implications. Nat. Rev. Genet. 13:297–109 [Google Scholar]
  48. Feldkamp ML, Meyer RE, Krikov S, Botto LD. 48.  2010. Acetaminophen use in pregnancy and risk of birth defects. Obstet. Gynecol. 115:1109–15 [Google Scholar]
  49. Finnell RH, Moon SP, Abbott LC, Golden JA, Chernoff GF. 49.  1986. Strain differences in heat-induced neural tube defects in mice. Teratology 33:2247–52 [Google Scholar]
  50. Foster WH, Langenbacher A, Gao C, Chen J, Wang Y. 50.  2013. Nuclear phosphatase PPM1G in cellular survival and neural development. Dev. Dyn 242:91101–9 [Google Scholar]
  51. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA. 51.  et al. 1995. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 10:1111–13 [Google Scholar]
  52. Fukuda T, Li E, Tokunaga A, Bestor TH, Sakamoto R. 52.  et al. 2011. Fbxl10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly. Mol. Cell. Neurosci. 46:3614–24 [Google Scholar]
  53. Gao Q, Gao Y-M. 53.  2007. Hyperglycemic condition disturbs the proliferation and cell death of neural progenitors in mouse embryonic spinal cord. Int. J. Dev. Neurosci. 25:6349–57 [Google Scholar]
  54. Gäreskog M, Eriksson UJ, Wentzel P. 54.  2006. Combined supplementation of folic acid and vitamin E diminishes diabetes-induced embryotoxicity in rats. Birth Defects Res. A Clin. Mol. Teratol. 76:6483–90 [Google Scholar]
  55. Gelineau-van Waes J, Starr L, Maddox J, Aleman F, Voss KA. 55.  et al. 2005. Maternal fumonisin exposure and risk for neural tube defects: mechanisms in an in vivo mouse model. Birth Defects Res. A Clin. Mol. Teratol. 73:7487–97 [Google Scholar]
  56. George L, Granath F, Johansson ALV, Annerén G, Cnattingius S. 56.  2006. Environmental tobacco smoke and risk of spontaneous abortion. Epidemiology 17:5500–5 [Google Scholar]
  57. Goetzinger KR, Stamilio DM, Dicke JM, Macones GA, Odibo AO. 57.  2008. Evaluating the incidence and likelihood ratios for chromosomal abnormalities in fetuses with common central nervous system malformations. Am. J. Obstet. Gynecol. 199:3285; e1–6 [Google Scholar]
  58. Graham JM, Ferm VH. 58.  1985. Heat- and alcohol-induced neural tube defects: interactions with folate in a golden hamster model. Pediatr. Res. 19:2247–51 [Google Scholar]
  59. Gray JD, Nakouzi G, Slowinska-Castaldo B, Dazard J-E, Rao JS. 59.  et al. 2010. Functional interactions between the LRP6 WNT co-receptor and folate supplementation. Hum. Mol. Genet. 19:234560–72 [Google Scholar]
  60. Greenberg JA, Bell SJ, Guan Y, Yu Y-H. 60.  2011. Folic acid supplementation and pregnancy: more than just neural tube defect prevention. Rev. Obstet. Gynecol. 4:252–59 [Google Scholar]
  61. Greene NDE, Stanier P, Copp AJ. 61.  2009. Genetics of human neural tube defects. Hum. Mol. Genet. 18:R2R113–29 [Google Scholar]
  62. Greene NDE, Stanier P, Moore GE. 62.  2011. The emerging role of epigenetic mechanisms in the etiology of neural tube defects. Epigenetics 6:7875–83 [Google Scholar]
  63. Haas J, Frese KS, Park YJ, Keller A, Vogel B. 63.  et al. 2013. Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol. Med. 5:3413–29 [Google Scholar]
  64. Haghighi Poodeh S, Alhonen L, Salonurmi T, Savolainen MJ. 64.  2014. Ethanol-induced impairment of polyamine homeostasis: a potential cause of neural tube defect and intrauterine growth restriction in fetal alcohol syndrome. Biochem. Biophys. Res. Commun. 446:173–78 [Google Scholar]
  65. Hall J, Solehdin F. 65.  1998. Folic acid for the prevention of congenital anomalies. Eur. J. Pediatr. 157:6445–50 [Google Scholar]
  66. Hargreaves DC, Crabtree GR. 66.  2011. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 21:396–420 [Google Scholar]
  67. Harmacek L, Watkins-Chow DE, Chen J, Jones KL, Pavan WJ. 67.  et al. 2014. A unique missense allele of BAF155, a core BAF chromatin remodeling complex protein, causes neural tube closure defects in mice. Dev. Neurobiol. 74:483–97 [Google Scholar]
  68. Harris MJ. 68.  2009. Insights into prevention of human neural tube defects by folic acid arising from consideration of mouse mutants. Birth Defects Res. A Clin. Mol. Teratol. 85:4331–39 [Google Scholar]
  69. Harris MJ, Juriloff DM. 69.  2007. Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects. Birth Defects Res. A Clin. Mol. Teratol. 79:3187–210 [Google Scholar]
  70. Harris MJ, Juriloff DM. 70.  2010. An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth Defects Res. A Clin. Mol. Teratol. 88:8653–69 [Google Scholar]
  71. Hata K, Okano M, Lei H, Li E. 71.  2002. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129:81983–93 [Google Scholar]
  72. He L, Cao J, Meng S, Ma A, Radovick S, Wondisford FE. 72.  2013. Activation of basal gluconeogenesis by coactivator p300 maintains hepatic glycogen storage. Mol. Endocrinol. 27:81322–32 [Google Scholar]
  73. Heintzman ND, Ren B. 73.  2009. Finding distal regulatory elements in the human genome. Curr. Opin. Genet. Dev. 19:6541–49 [Google Scholar]
  74. Hendricks KA, Nuno OM, Suarez L, Larsen R. 74.  2001. Effects of hyperinsulinemia and obesity on risk of neural tube defects among Mexican Americans. Epidemiology 12:6630–35 [Google Scholar]
  75. Hibbard ED, Smithells RW. 75.  1965. Folic acid metabolism and human embryopathy. Lancet 285:73981254 [Google Scholar]
  76. Hirabayashi Y, Schaniel C, Pujadas E, Banting GS, Gotoh Y. 76.  et al. 2010. Epigenetic control of neural precursor cell fate during development. Nat. Rev. Neurosci. 11:377–88 [Google Scholar]
  77. Hiramatsu Y, Sekiguchi N, Hayashi M, Isshiki K, Yokota T. 77.  et al. 2002. Diacylglycerol production and protein kinase C activity are increased in a mouse model of diabetic embryopathy. Diabetes 51:92804–10 [Google Scholar]
  78. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V. 78.  et al. 2013. Super-enhancers in the control of cell identity and disease. Cell 155:4934–47 [Google Scholar]
  79. Hook EB, Czeizel AE. 79.  1997. Can terathanasia explain the protective effect of folic-acid supplementation on birth defects?. Lancet 350:9076513–15 [Google Scholar]
  80. Hoyo C, Murtha AP, Schildkraut JM, Forman MR, Calingaert B. 80.  et al. 2011. Folic acid supplementation before and during pregnancy in the Newborn Epigenetics STudy (NEST). BMC Public Health 11:146 [Google Scholar]
  81. Joó JG, Beke A, Papp C, Tóth-Pál E, Csaba A. 81.  et al. 2007. Neural tube defects in the sample of genetic counselling. Prenat. Diagn. 27:10912–21 [Google Scholar]
  82. Juriloff DM, Harris MJ. 82.  2012. A consideration of the evidence that genetic defects in planar cell polarity contribute to the etiology of human neural tube defects. Birth Defects Res. A Clin. Mol. Teratol. 94:10824–40 [Google Scholar]
  83. Kappen C, Salbaum JM. 83.  2014. Gene expression in teratogenic exposures: a new approach to understanding individual risk. Reprod. Toxicol. 45:94–104 [Google Scholar]
  84. Kibar Z, Torban E, McDearmid JR, Reynolds A, Berghout J. 84.  et al. 2007. Mutations in VANGL1 associated with neural-tube defects. N. Engl. J. Med. 356:141432–37 [Google Scholar]
  85. Kim JK, Huh SO, Choi H, Lee KS, Shin D. 85.  et al. 2001. Srg3, a mouse homolog of yeast SWI3, is essential for early embryogenesis and involved in brain development. Mol. Cell Biol. 21:227787–95 [Google Scholar]
  86. Korstanje R, Desai J, Lazar G, King B, Rollins J. 86.  et al. 2008. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects. Physiol. Genomics 35:3296–304 [Google Scholar]
  87. Kost K. 87.  2013. Unintended Pregnancy Rates at the State Level: Estimates For 2002, 2004, 2006 and 2008 New York: Guttmacher Instit.
  88. Kouzarides T. 88.  2007. Chromatin modifications and their function. Cell 128:4693–705 [Google Scholar]
  89. Krebs AR, Karmodiya K, Lindahl-Allen M, Struhl K, Tora L. 89.  2011. SAGA and ATAC histone acetyl transferase complexes regulate distinct sets of genes and ATAC defines a class of p300-independent enhancers. Mol. Cell 44:3410–23 [Google Scholar]
  90. Kruman II, Fowler A-K. 90.  2014. Impaired one carbon metabolism and DNA methylation in alcohol toxicity. J. Neurochem. 192:770–80 [Google Scholar]
  91. Kyttala M, Tallila J, Salonen R, Kopra O, Kohlschmidt N. 91.  et al. 2006. MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome. Nat. Genet. 38:155–57 [Google Scholar]
  92. Lacasaña M, Blanco-Muñoz J, Borja-Aburto VH, Aguilar-Garduño C, Rodríguez-Barranco M. 92.  et al. 2012. Effect on risk of anencephaly of gene-nutrient interactions between methylenetetrahydrofolate reductase C677T polymorphism and maternal folate, vitamin B12 and homocysteine profile. Public Health Nutr. 15:81419–28 [Google Scholar]
  93. Lakkis MM, Golden JA, O'Shea KS, Epstein JA. 93.  1999. Neurofibromin deficiency in mice causes exencephaly and is a modifier for Splotch neural tube defects. Dev. Biol. 212:180–92 [Google Scholar]
  94. Lee JE, Gleeson JG. 94.  2011. Cilia in the nervous system: linking cilia function and neurodevelopmental disorders. Curr. Opin. Neurol. 24:98–105 [Google Scholar]
  95. Lemos MC, Harding B, Reed AAC, Jeyabalan J, Walls GV. 95.  et al. 2009. Genetic background influences embryonic lethality and the occurrence of neural tube defects in Men1 null mice: relevance to genetic modifiers. J. Endocrinol. 203:1133–42 [Google Scholar]
  96. Lerin C, Rodgers JT, Kalume DE, Kim S-H, Pandey A, Puigserver P. 96.  2006. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α. Cell Metab. 3:6429–38 [Google Scholar]
  97. Li CCY, Cropley JE, Cowley MJ, Preiss T, Martin DIK, Suter CM. 97.  2011. A sustained dietary change increases epigenetic variation in isogenic mice. PLOS Genet. 7:4e1001380 [Google Scholar]
  98. Li E, Bestor TH, Jaenisch R. 98.  1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:6915–26 [Google Scholar]
  99. Li X, Weng H, Reece EA, Yang P. 99.  2011. SOD1 overexpression in vivo blocks hyperglycemia-induced specific PKC isoforms: substrate activation and consequent lipid peroxidation in diabetic embryopathy. Am. J. Obstet. Gynecol. 205:184; e1–6 [Google Scholar]
  100. Li X, Weng H, Xu C, Reece EA, Yang P. 100.  2012. Oxidative stress-induced JNK1/2 activation triggers proapoptotic signaling and apoptosis that leads to diabetic embryopathy. Diabetes 61:82084–92 [Google Scholar]
  101. Li X, Xu C, Yang P. 101.  2013. c-Jun NH2-terminal kinase 1/2 and endoplasmic reticulum stress as interdependent and reciprocal causation in diabetic embryopathy. Diabetes 62:2599–608 [Google Scholar]
  102. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. 102.  2005. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J. Nutr. 135:61382–86 [Google Scholar]
  103. Logan CV, Abdel-Hamed Z, Johnson CA. 103.  2011. Molecular genetics and pathogenic mechanisms for the severe ciliopathies: insights into neurodevelopment and pathogenesis of neural tube defects. Mol. Neurobiol. 43:12–26 [Google Scholar]
  104. López-Camelo JS, Orioli IM, da Graça Dutra M, Nazer-Herrera J, Rivera N. 104.  et al. 2005. Reduction of birth prevalence rates of neural tube defects after folic acid fortification in Chile. Am. J. Med. Genet. A 135:2120–25 [Google Scholar]
  105. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K. 105.  et al. 2012. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:98592095–128 [Google Scholar]
  106. Lundberg YW, Wing MJ, Xiong W, Zhao J, Finnell RH. 106.  2003. Genetic dissection of hyperthermia-induced neural tube defects in mice. Birth Defects Res. A Clin. Mol. Teratol. 67:6409–13 [Google Scholar]
  107. Lupo PJ, Canfield MA, Chapa C, Lu W, Agopian AJ. 107.  et al. 2012. Diabetes and obesity-related genes and the risk of neural tube defects in the national birth defects prevention study. Am. J. Epidemiol. 176:121101–9 [Google Scholar]
  108. Lupo PJ, Mitchell LE, Canfield MA, Shaw GM, Olshan AF. 108.  et al. 2014. Maternal-fetal metabolic gene-gene interactions and risk of neural tube defects. Mol. Genet. Metab. 111:146–51 [Google Scholar]
  109. Makelarski JA, Romitti PA, Sun L, Burns TL, Druschel CM. 109.  et al. 2013. Periconceptional maternal alcohol consumption and neural tube defects. Birth Defects Res. A Clin. Mol. Teratol. 97:3152–60 [Google Scholar]
  110. Marean A, Graf A, Zhang Y, Niswander L. 110.  2011. Folic acid supplementation can adversely affect murine neural tube closure and embryonic survival. Hum. Mol. Genet. 20:183678–83 [Google Scholar]
  111. Massarwa R, Niswander L. 111.  2013. In toto live imaging of mouse morphogenesis and new insights into neural tube closure. Development 140:1226–36 [Google Scholar]
  112. Matok I, Gorodischer R, Koren G, Landau D, Wiznitzer A, Levy A. 112.  2009. Exposure to folic acid antagonists during the first trimester of pregnancy and the risk of major malformations. Br. J. Clin. Pharmacol. 68:6956–62 [Google Scholar]
  113. Michie CA. 113.  1991. Neural tube defects in 18th century. Lancet 337:504 [Google Scholar]
  114. Milunsky A, Ulcickas M, Rothman KJ, Willett W, Jick SS, Jick H. 114.  1992. Maternal heat exposure and neural tube defects. J. Am. Med. Assoc. 268:7882–85 [Google Scholar]
  115. Miranda TB, Bassuk AG, Jones PA, Kibar Z. 115.  2007. DNA methylation: the nuts and bolts of repression. J. Cell. Physiol. 213:2384–90 [Google Scholar]
  116. Momb J, Lewandowski JP, Bryant JD, Fitch R, Surman DR. 116.  et al. 2013. Deletion of Mthfd1l causes embryonic lethality and neural tube and craniofacial defects in mice. Proc. Natl. Acad. Sci. USA 110:2549–54 [Google Scholar]
  117. 117. MRC Vitam. Study Res. Group 1991. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 338:8760131–37 [Google Scholar]
  118. Murko C, Lagger S, Steiner M, Seiser C, Schoefer C, Pusch O. 118.  2013. Histone deacetylase inhibitor trichostatin A induces neural tube defects and promotes neural crest specification in the chicken neural tube. Differentiation 85:1–255–66 [Google Scholar]
  119. Nagy Z, Riss A, Romier C, le Guezennec X, Dongre AR. 119.  et al. 2009. The human SPT20-containing SAGA complex plays a direct role in the regulation of endoplasmic reticulum stress-induced genes. Mol. Cell. Biol. 29:61649–60 [Google Scholar]
  120. Narisawa A, Komatsuzaki S, Kikuchi A, Niihori T, Aoki Y. 120.  et al. 2012. Mutations in genes encoding the glycine cleavage system predispose to neural tube defects in mice and humans. Hum. Mol. Genet. 21:71496–503 [Google Scholar]
  121. Nishimura T, Takeichi M. 121.  2008. Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling. Development 135:1493–502 [Google Scholar]
  122. Obican SG, Finnell RH, Mills JL, Shaw GM, Scialli AR. 122.  2010. Folic acid in early pregnancy: a public health success story. FASEB J. 24:114167–74 [Google Scholar]
  123. Okano M, Bell DW, Haber DA, Li E. 123.  1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:3247–57 [Google Scholar]
  124. Omori H, Otsu M, Suzuki A, Nakayama T, Akama K. 124.  et al. 2014. Effects of heat shock on survival, proliferation and differentiation of mouse neural stem cells. Neurosci. Res. 79:13–21 [Google Scholar]
  125. Ortega RM, Requejo AM, López-Sobaler AM, Navia B, Mena MC. 125.  et al. 2004. Smoking and passive smoking as conditioners of folate status in young women. J. Am. Coll. Nutr. 23:4365–71 [Google Scholar]
  126. Ougland R, Lando D, Jonson I, Dahl JA, Moen MN. 126.  et al. 2012. ALKBH1 is a histone H2A dioxygenase involved in neural differentiation. Stem Cells 30:122672–82 [Google Scholar]
  127. Parker SE, Yazdy MM, Tinker SC, Mitchell AA, Werler MM. 127.  2013. The impact of folic acid intake on the association among diabetes mellitus, obesity, and spina bifida. Am. J. Obstet. Gynecol. 209:3239; e1–8 [Google Scholar]
  128. Partanen M, Motoyama J, Hui CC. 128.  1999. Developmentally regulated expression of the transcriptional cofactors/histone acetyltransferases CBP and p300 during mouse embryogenesis. Int. J. Dev. Biol. 43:487–94 [Google Scholar]
  129. Pfeiffer CM, Hughes JP, Lacher DA, Bailey RL, Berry RJ. 129.  et al. 2012. Estimation of trends in serum and RBC folate in the U.S. population from pre- to postfortification using assay-adjusted data from the NHANES 1988–2010. J. Nutr. 142:5886–93 [Google Scholar]
  130. Pujadas E, Feinberg AP. 130.  2012. Regulated noise in the epigenetic landscape of development and disease. Cell 148:61123–31 [Google Scholar]
  131. Raj A, Rifkin SA, Andersen E, van Oudenaarden A. 131.  2011. Variability in gene expression underlies incomplete penetrance. Nature 463:7283913–18 [Google Scholar]
  132. Rasmussen SA, Chu SY, Kim SY, Schmid CH, Lau J. 132.  2008. Maternal obesity and risk of neural tube defects: a metaanalysis. Am. J. Obstet. Gynecol. 198:6611–19 [Google Scholar]
  133. Ray HJ, Niswander L. 133.  2012. Mechanisms of tissue fusion during development. Development 139:101701–11 [Google Scholar]
  134. Ray JG, Wyatt PR, Vermeulen MJ, Meier C, Cole DEC. 134.  2005. Greater maternal weight and the ongoing risk of neural tube defects after folic acid flour fortification. Obstet. Gynecol. 105:2261–65 [Google Scholar]
  135. Reece EA. 135.  2012. Diabetes-induced birth defects: What do we know? What can we do?. Curr. Diab. Rep. 12:124–32 [Google Scholar]
  136. Robert E, Smith-Roe SL, Guibaud P, Bultman SJ. 136.  1982. Maternal valproic acid and congenital neural tube defects. Lancet 320:8304937 [Google Scholar]
  137. Robinson A, Escuin S, Doudney K, Vekemans M, Stevenson RE. 137.  et al. 2012. Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis. Hum. Mutat. 33:2440–47 [Google Scholar]
  138. Rogner UC, Spyropoulos DD, Le Novère N, Changeux JP, Avner P. 138.  2000. Control of neurulation by the nucleosome assembly protein-1-like 2. Nat. Genet. 25:4431–35 [Google Scholar]
  139. Sadler TW, Merrill AH, Stevens VL, Sullards MC, Wang E, Wang P. 139.  2002. Prevention of fumonisin B1-induced neural tube defects by folic acid. Teratology 66:4169–76 [Google Scholar]
  140. Sakai M, Tujimura T, Yongheng C, Noguchi T, Inagaki K. 140.  et al. 2012. CITED2 links hormonal signaling to PGC-1α; acetylation in the regulation of gluconeogenesis. Nat. Med. 18:612–17 [Google Scholar]
  141. Salbaum JM, Kappen C. 141.  2010. Neural tube defect genes and maternal diabetes during pregnancy. Birth Defects Res. A Clin. Mol. Teratol. 88:8601–11 [Google Scholar]
  142. Sandford MK, Kissling GE, Joubert PE. 142.  1992. Neural tube defect etiology: new evidence concerning maternal hyperthermia, health and diet. Dev. Med. Child Neurol. 34:8661–75 [Google Scholar]
  143. Sandovici I, Harris MJ, Smith NH, Juriloff DM, Nitert MD. 143.  et al. 2011. Maternal diet and aging alter the epigenetic control of a promoter-enhancer interaction at the Hnf4a gene in rat pancreatic islets. Proc. Natl. Acad. Sci. USA 108:135449–54 [Google Scholar]
  144. Sanyal A, Lajoie BR, Jain G, Dekker J. 144.  2012. The long-range interaction landscape of gene promoters. Nature 489:7414109–13 [Google Scholar]
  145. Saxén L, Holmberg PC, Nurminen M, Kuosma E. 145.  1982. Sauna and congenital defects. Teratology 25:3309–13 [Google Scholar]
  146. Schaniel C, Ang Y-S, Ratnakumar K, Cormier C, James T. 146.  et al. 2009. Smarcc1/Baf155 couples self-renewal gene repression with changes in chromatin structure in mouse embryonic stem cells. Stem Cells 27:2979–91 [Google Scholar]
  147. Schmidt RJ, Romitti PA, Burns TL, Browne ML, Druschel CM. 147.  et al. 2009. Maternal caffeine consumption and risk of neural tube defects. Birth Defects Res. A Clin. Mol. Teratol. 85:11879–89 [Google Scholar]
  148. Schwartz YB, Pirrotta V. 148.  2007. Polycomb silencing mechanisms and the management of genomic programmes. Nat. Rev. Genet. 8:19–22 [Google Scholar]
  149. Shakèd M, Weissmüller K, Svoboda H, Hortschansky P, Nishino N. 149.  et al. 2008. Histone deacetylases control neurogenesis in embryonic brain by inhibition of BMP2/4 signaling. PLOS ONE 3:7e2668 [Google Scholar]
  150. Shaw GM, Todoroff K, Finnell RH, Lammer EJ. 150.  2000. Spina bifida phenotypes in infants or fetuses of obese mothers. Teratology 61:5376–81 [Google Scholar]
  151. Shin J-H, Shiota K. 151.  1999. Folic acid supplementation of pregnant mice suppresses heat-induced neural tube defects in the offspring. J. Nutr. 129:2070–73 [Google Scholar]
  152. Shpargel KB, Sengoku T, Yokoyama S, Magnuson T. 152.  2012. UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development. PLoS Genet 8:9e1002964 [Google Scholar]
  153. Shyamasundar S, Jadhav SP, Bay BH, Tay SSW, Kumar SD. 153.  et al. 2013. Analysis of epigenetic factors in mouse embryonic neural stem cells exposed to hyperglycemia. PLOS ONE 8:6e65945 [Google Scholar]
  154. Steegers-Theunissen RP, Obermann-Borst SA, Kremer D, Lindemans J, Siebel C. 154.  et al. 2009. Periconceptional maternal folic acid use of 400 μg per day is related to increased methylation of the IGF2 gene in the very young child. PLOS ONE 4:11e7845 [Google Scholar]
  155. Stothard KJ, Tennant PWG, Bell R, Rankin J. 155.  2009. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. J. Am. Med. Assoc. 301:6636–50 [Google Scholar]
  156. Stover PJ, Caudill MA. 156.  2008. Genetic and epigenetic contributions to human nutrition and health: managing genome-diet interactions. J. Am. Diet. Assoc. 108:91480–87 [Google Scholar]
  157. Struhl K, Rogner UC, Segal E, Spyropoulos DD, Le Novère N. 157.  et al. 2013. Determinants of nucleosome positioning. Nat. Struct. Mol. Biol. 20:3267–73 [Google Scholar]
  158. Suarez L, Felkner M, Brender JD, Canfield M, Hendricks K. 158.  2007. Maternal exposures to cigarette smoke, alcohol, and street drugs and neural tube defect occurrence in offspring. Matern. Child Health J. 12:3394–401 [Google Scholar]
  159. Suarez L, Felkner M, Brender JD, Canfield M, Zhu H, Hendricks KA. 159.  2012. Neural tube defects on the Texas-Mexico border: what we've learned in the 20 years since the Brownsville cluster. Birth Defects Res. A Clin. Mol. Teratol. 94:11882–92 [Google Scholar]
  160. Suarez L, Felkner M, Hendricks K. 160.  2004. The effect of fever, febrile illnesses, and heat exposures on the risk of neural tube defects in a Texas-Mexico border population. Birth Defects Res. A Clin. Mol. Teratol. 70:10815–19 [Google Scholar]
  161. Suzuki MM, Zhang Y, Salbaum JM, Bamforth SD, Bird A. 161.  et al. 2008. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9:6465–76 [Google Scholar]
  162. Takeuchi T, Yamazaki Y, Katoh-Fukui Y, Tsuchiya R, Kondo S. 162.  et al. 1995. Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation. Genes Dev. 9:101211–22 [Google Scholar]
  163. Thiersch JB. 163.  1952. Therapeutic abortions with a folic acid antagonist, 4-aminopteroylglutamic acid (4-amino P.G.A) administered by the oral route. Am. J. Obstet. Gynecol. 63:61298–304 [Google Scholar]
  164. Thiersch JB, Philips FS. 164.  1950. Effect of 4-amino-pteroylglutamic acid (aminopterin) on early pregnancy. Proc. Soc. Exp. Biol. Med. 74:1204–8 [Google Scholar]
  165. van der Put NM, Steegers-Theunissen RP, Frosst P, Trijbels FJ, Eskes TK. 165.  et al. 1995. Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida. Lancet 346:89821070–71 [Google Scholar]
  166. Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X. 166.  et al. 2004. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119:4555–66 [Google Scholar]
  167. Villanueva JA, Halsted CH. 167.  2004. Hepatic transmethylation reactions in micropigs with alcoholic liver disease. Hepatology 39:51303–10 [Google Scholar]
  168. Wald NJ, Law MR, Morris JK, Wald DS. 168.  2001. Quantifying the effect of folic acid. Lancet 358:92982069–73 [Google Scholar]
  169. Waller DK, Shaw GM, Rasmussen SA, Hobbs CA, Canfield MA. 169.  et al. 2007. Prepregnancy obesity as a risk factor for structural birth defects. Arch. Pediatr. Adolesc. Med. 161:8745–50 [Google Scholar]
  170. Wallingford JB. 170.  2012. Planar cell polarity and the developmental control of cell behavior in vertebrate embryos. Annu. Rev. Cell Dev. Biol. 28:627–53 [Google Scholar]
  171. Wallingford JB, Niswander LA, Shaw GM, Finnell RH. 171.  2013. The continuing challenge of understanding, preventing, and treating neural tube defects. Science 339:61231222002 [Google Scholar]
  172. Wang F, Reece EA, Yang P. 172.  2013. Superoxide dismutase 1 overexpression in mice abolishes maternal diabetes-induced endoplasmic reticulum stress in diabetic embryopathy. Am. J. Obstet. Gynecol. 209:4345; e1–7 [Google Scholar]
  173. Wang M, Wang Z-P, Gong R, Zhao Z-T. 173.  2014. Maternal smoking during pregnancy and neural tube defects in offspring: a meta-analysis. Child's Nerv. Syst. 30:183–89 [Google Scholar]
  174. Wang M, Wang Z-P, Zhang M, Zhao Z-T. 174.  2014. Maternal passive smoking during pregnancy and neural tube defects in offspring: a meta-analysis. Arch. Gynecol. Obstet. 289:3513–21 [Google Scholar]
  175. Warkany J, Beaudry PH, Hornstein S. 175.  1959. Attempted abortion with aminopterin (4-amino-pteroylglutamic acid); malformations of the child. Am. Med. Assoc. J. Dis. Child 97:3274–81 [Google Scholar]
  176. Waterland RA, Jirtle RL. 176.  2003. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 23:155293–300 [Google Scholar]
  177. Weatherbee SD, Niswander LA, Anderson KV. 177.  2009. A mouse model for Meckel syndrome reveals Mks1 is required for ciliogenesis and hedgehog signaling. Hum. Mol. Genet. 18:4565–75 [Google Scholar]
  178. Wei X, Li H, Miao J, Liu B, Zhan Y. 178.  et al. 2013. miR-9*- and miR-124a-mediated switching of chromatin remodelling complexes is altered in rat spina bifida aperta. Neurochem. Res. 38:81605–15 [Google Scholar]
  179. Welstead GG, Creyghton MP, Bilodeau S, Cheng AW, Markoulaki S. 179.  et al. 2012. X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner. Proc. Natl. Acad. Sci. USA 109:3213004–9 [Google Scholar]
  180. Xu C, Li X, Wang F, Weng H, Yang P. 180.  2013. Trehalose prevents neural tube defects by correcting maternal diabetes-suppressed autophagy and neurogenesis. Am. J. Physiol. Endocrinol. Metab. 305:5E667–78 [Google Scholar]
  181. Yan L, Zhao L, Long Y, Zou P, Ji G. 181.  et al. 2012. Association of the maternal MTHFR C677T polymorphism with susceptibility to neural tube defects in offsprings: evidence from 25 case-control studies. PLOS ONE 7:10e41689 [Google Scholar]
  182. Yang P, Li X, Xu C, Eckert RL, Reece EA. 182.  et al. 2013. Maternal hyperglycemia activates an ASK1-FoxO3a-caspase 8 pathway that leads to embryonic neural tube defects. Sci. Signal. 6:290ra74 [Google Scholar]
  183. Yang P, Zhao Z, Reece EA. 183.  2007. Involvement of c-Jun N-terminal kinases activation in diabetic embryopathy. Biochem. Biophys. Res. Commun. 357:3749–54 [Google Scholar]
  184. Yazdy MM, Tinker SC, Mitchell AA, Demmer LA, Werler MM. 184.  2012. Maternal tea consumption during early pregnancy and the risk of spina bifida. Birth Defects Res. A Clin. Mol. Teratol. 94:10756–61 [Google Scholar]
  185. Ybot-Gonzalez P, Savery D, Gerrelli D, Signore M, Mitchell CE. 185.  et al. 2007. Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development 134:4789–99 [Google Scholar]
  186. Ye R, Ren A, Zhang L, Li Z, Liu J. 186.  et al. 2011. Tea drinking as a risk factor for neural tube defects in northern China. Epidemiology 22:4491–96 [Google Scholar]
  187. Yin Z, Haynie J, Yang X, Han B, Kiatchoosakun S. 187.  et al. 2002. The essential role of Cited2, a negative regulator for HIF-1α, in heart development and neurulation. Proc. Natl. Acad. Sci. USA 99:1610488–93 [Google Scholar]
  188. Youngblood ME, Williamson R, Bell KN, Johnson Q, Kancherla V, Oakley GP Jr. 188.  2013. 2012 Update on global prevention of folic acid–preventable spina bifida and anencephaly. Birth Defects Res. A Clin. Mol. Teratol. 97:10658–63 [Google Scholar]
  189. Yuan Q, Zhao S, Liu S, Zhang Y, Fu J. 189.  et al. 2013. Folic acid supplementation changes the fate of neural progenitors in mouse embryos of hyperglycemic and diabetic pregnancy. J. Nutr. Biochem. 24:71202–12 [Google Scholar]
  190. Zabihi S, Loeken MR. 190.  2010. Understanding diabetic teratogenesis: Where are we now and where are we going?. Birth Defects Res. A Clin. Mol. Teratol. 88:10779–90 [Google Scholar]
  191. Zhang T, Lou J, Zhong R, Wu J, Zou L. 191.  et al. 2013. Genetic variants in the folate pathway and the risk of neural tube defects: a meta-analysis of the published literature. PLOS ONE 8:4e59570 [Google Scholar]
  192. Zhao Z, Yang P, Eckert RL, Reece EA. 192.  2009. Caspase-8: a key role in the pathogenesis of diabetic embryopathy. Birth Defects Res. B Dev. Reprod. Toxicol. 86:172–77 [Google Scholar]
/content/journals/10.1146/annurev-genet-120213-092208
Loading
/content/journals/10.1146/annurev-genet-120213-092208
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error