Skip to main content
Log in

Abstract

Many of the reservations that might attach to the use of meta-analysis generally (for example, regarding publication bias) do not apply in the specific context of drug development. A meta-analysis is, in fact, a highly natural and appropriate way to summarize the results of a drug development program, as has been recognized in the International Conference on Harmonization (ICH) E9 guideline. Since a sponsor will have access to all original data, the data from a set of clinical trials in a drug development program have a very similar (hierarchical) structure to the data from a set of centers in a single multicenter trial. Curiously, however, the controversies over analyzing multicenter trials have often been different from those in the field of meta-analysis. In this paper, the options open to the meta-analyst in drug development are examined and comparisons to approaches used in analyzing multicenter trials are made in an attempt to provide some unifying insights, in particular as regards the handling of models with interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Senn SJ. Statistical Issues in Drug Development. Chichester, UK: Wiley; 1997.

    Google Scholar 

  2. Petitti DB. Meta-analysis Decision Analysis and Cost-Effectiveness Analysis. Oxford, UK: Oxford; 1994.

    Google Scholar 

  3. Glass GV. Primary, secondary and meta-analysis of research. Ed Res. 1976;5:3–8.

    Article  Google Scholar 

  4. Pearson K. Report on certain enteric fever inoculation statistics. Br Med J. 1904; Nov 5: 1243–1246.

    Google Scholar 

  5. Winkelstein W. The first use of meta-analysis? Am J Epid. 1998;147:717.

    Article  Google Scholar 

  6. Fisher RA. Studies in crop variation. J Agric Sci. 1921;11:107–135.

    Article  Google Scholar 

  7. Healy MJR. Frank Yates, 1902-1994—The work of a statistician. Int Stat Rev. 1995;63:271–288.

    Google Scholar 

  8. Yates F, Cochran WG. The analysis of groups of experiments. J Agr Sci. 1938;28:556–580.

    Article  Google Scholar 

  9. Tippett LHG. The Methods of Statistics. London, UK: Williams and Norgate; 1931.

    Google Scholar 

  10. Fisher RA. Statistical Methods for Research Workers. 4th edition. Edinburgh, UK: Oliver and Boyd; 1932.

    Google Scholar 

  11. Sonneman E. Kombination unabhangiger tests. In: Vollmar, J ed. Biometrie in der chemische pharma-zeutischen Industrie 4. Stuttgart, Germany: Fischer; 1991:91–112.

    Google Scholar 

  12. Peto R. Why do we need systematic overviews of randomized trials? (With discussion) Stat Med. 1987;6:233–240.

    Article  CAS  PubMed  Google Scholar 

  13. Egger M, Davey Smith G. Bias in location and selection of studies. Br Med J. 1998;316:61–66.

    Article  CAS  Google Scholar 

  14. Thornton A, Lee P. Publication bias in meta-analysis: its causes and consequences. J Clin Epid. 2000.

    Google Scholar 

  15. Eysenck H. Meta-analysis and its problems. Br Med J. 1994;309:789–792.

    Article  CAS  Google Scholar 

  16. Moher D, Pham B, Jones A, Cook DJ, Jadad AR, Moher M, Tugwell P, Klassen TP. Does quality of reports of randomised trials affect estimates of intervention efficacy reported in meta-analyses. Lancet. 1998;352:609–613.

    Article  CAS  PubMed  Google Scholar 

  17. Lee PN. Simple methods for checking for possible errors in reported odds ratios, relative risks and confidence intervals. Stat Med. 1999;18:1973–1981.

    Article  CAS  PubMed  Google Scholar 

  18. Stewart LA, Parmar MK. Meta-analysis of the literature or of individual data: is there a difference? Lancet. 1993;341:418–422.

    Article  CAS  PubMed  Google Scholar 

  19. Light RJ. Accumulating evidence from independent studies: what we can win and what we can lose. Stat Med. 1987;6:221–228.

    Article  CAS  PubMed  Google Scholar 

  20. Thompson SG, Pocock, SJ. Can meta-analysis be trusted? Lancet. 1991;338,1127–1130.

    Article  CAS  PubMed  Google Scholar 

  21. Lindbaeck M, Hjortdahl P. How do two meta-analyses of similar data reach opposite conclusions? Br Med J. 1999;318:873.

    Article  Google Scholar 

  22. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Statistical principles for clinical trials. Stat Med. 1999;18:1905–1942.

    Google Scholar 

  23. Richardson W, Bablok, B. Clinical experience with formoterol. In Holgate, ST, Ed. Formoterol: Fast and Long-Lasting Brochodilation. London, UK: Royal Society of Medicine Services; 1992.

    Google Scholar 

  24. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Nat Cancer Inst. 1959;22:719–748.

    CAS  PubMed  Google Scholar 

  25. Whitehead A, Whitehead J. A general parametric approach to the meta-analysis of randomised clinical trials. Stat Med. 1991;31:1665–1677.

    Article  Google Scholar 

  26. Hedges LV, Olkin I. Statistical Methods for Metaanalysis. Orlando, Florida: Academic Press; 1985.

    Google Scholar 

  27. Salsburg, D. Why analysis of variance is inappropriate for multiclinic trials. Cont Clin Trials. 1999;20:453–468.

    Article  CAS  Google Scholar 

  28. Senn SJ, Harrell F. On wisdom after the event. J Clin Epidemiol. 1997;50:749–751.

    Article  CAS  PubMed  Google Scholar 

  29. Goldstein H. Multilevel Models in Educational and Social Research. London, UK: Griffin; 1987.

    Google Scholar 

  30. Källén A. Treatment-by-center interaction: what is the issue? Drug Inf J. 1997;31:927–936.

    Article  Google Scholar 

  31. Gallo P. Center-Weighting Issues in Multicenter Clinical Trials. J Biopharm Stats. 2000; 10.

  32. Nelder J. A reformulation of linear models. (With discussion) J R Statist Soc A. 1977;140:48–77.

    Article  Google Scholar 

  33. DerSimonian R, Laird N. Meta-analysis in clinical trials. Cont Clin Trials. 1986;7:177–188.

    Article  CAS  Google Scholar 

  34. Hardy RJ, Thompson SG. A likelihood approach to meta-analysis with random effects. Stat Med. 1996;15:619–629.

    Article  CAS  PubMed  Google Scholar 

  35. Brand R, Kragt H. Importance of trends in the interpretation of an overall odds ratio in a meta-anlysis of clinical trials. Stat Med. 1992;11:2077–2082.

    Article  CAS  PubMed  Google Scholar 

  36. Mcintosh M. The population risk as an explanatory variable in research synthesis of clinical trials. Stat Med. 1996;15:1713–1728.

    Article  CAS  PubMed  Google Scholar 

  37. Schmid CH. Exploring heterogeneity in randomized trials via meta-analysis. Drug Inf J. 1999;33:211–224.

    Article  Google Scholar 

  38. Senn SJ. Importance of trends in the interpretation of an overall odds-ratio in a meta-analysis of clinical trials. Stat Med. 1994;13:293–295.

    Article  CAS  PubMed  Google Scholar 

  39. Van Houwelingen H, Senn SJ. Letter to the editor: Investigating underlying risk as a source of hetero-geniety in meta-analysis. Stat Med. 1999;18:110–113.

    Article  PubMed  Google Scholar 

  40. Van Houwelingen H, Zwinderman K, Stijnen T. A bivariate approach to meta-analysis. Stat Med. 1993;12:2272–2284.

    Google Scholar 

  41. Thompson SG, Smith TC, Sharp SJ. Investigating underlying risk as a source of heterogeneity in metaanalysis. Stat Med. 1997;16:2883–2900.

    Article  Google Scholar 

  42. Thompson SG, Prevost TC, Sharp SJ. Authors’ reply. Stat Med. 1999;18:113–115.

    Article  Google Scholar 

  43. Nelder, J. The statistics of linear models: back to basics. Statist Comp. 1994;4:221–234.

    Article  Google Scholar 

  44. Chuang-Stein C, Tong D. The impact of parameterization on the interpretation of the main-effect term in the presence of an interaction. Drug Inf J. 1996; 30:421–424.

    Article  Google Scholar 

  45. Speed FM, Hocking RR, Hackney OP. Methods of analysis of linear models with unbalanced data. J Am Stat Assoc. 1978;73:105–112.

    Article  Google Scholar 

  46. Jeffreys. Theory of Probability. Oxford, UK: Clarendon Press; 1939.

    Google Scholar 

  47. Fisher RA. Statistical Methods for Research Workers. In Bennett, Ed. Statistical Methods, Experimental Design and Scientific Inference. Oxford, UK: Oxford Science Publications; 1990.

    Google Scholar 

  48. Berry DA. A case for Bayesianism in clinical trials (with discussion). Stat Med. 1993;12:1377–1404.

    Article  CAS  PubMed  Google Scholar 

  49. Smith TC, Spiegelhalter DJ, Parmar MKB. Bayesian meta-analysis of randomized trials using graphical models and BUGS. In: Berry DA and Stangl DK, eds. Bayesian Biostatistics. New York, NY. Marcel Dekker; 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Senn BA, MSc, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senn, S. The Many Modes of Meta. Ther Innov Regul Sci 34, 535–549 (2000). https://doi.org/10.1177/009286150003400222

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/009286150003400222

Key Words

Navigation