Skip to main content
Log in

Nuclear Progesterone Receptor Expression in the Human Fetal Membranes and Decidua at Term Before and After Labor

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

To explore how progesterone affects human pregnancy, we identified the progesterone target cells within thefetal membranes (amnion, chorion, and decidua) at term by assessing the extent of expression and localization of the nuclear progesterone receptors, progesterone receptor-A and progesterone receptor-B. Fetal membranes (separated into amnion and chorion–decidua) were obtained after term cesarean deliveries performed before (n = 7) and after (n = 7) labor onset. Nuclear progesterone receptor expression was determined by the abundance of nuclear progesterone receptor mRNAs (by quantitative reverse transcriptase–polymerase chain reaction) and proteins (by western blotting). Localization of nPRs was determined by immunohistochemistry. Progesterone receptor-A and progesterone receptor-B mRNA and protein levels were highest in the chorion–decidua and did not change in association with labor. Nuclear progesterone receptor mRNAs and proteins were barely detectable in amnion. Nuclear progesterone receptor immunostaining was detected only in the nucleus of decidual cells. These findings suggest that the decidua, and not the amnion and chorion, is a direct target for nuclear progesterone receptor–mediated progesterone actions during human pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Frydman R, Fernandez H, Pons JC, Ulmann A. Mifepristone (RU486) and therapeutic late pregnancy termination: a double-blind study of two different doses. Hum Reprod. 1988;3:803–806.

    Article  CAS  PubMed  Google Scholar 

  2. Mahajan DK, London SN. Mifepristone (RU486): a review. Fertil Steril. 1997;68:967–976.

    Article  CAS  PubMed  Google Scholar 

  3. Neilson JP. Mifepristone for induction of labour. Cochrane Database Syst Rev. 2000:CD002865.

  4. Merlino AA, Welsh TN, Tan H, et al. Nuclear progesterone receptors in the human pregnancy myometrium: evidence that parturition involves functional progesterone withdrawal mediated by increased expression of progesterone receptor-A. J Clin Endocrinol Metab. 2007;92:1927–1933.

    Article  CAS  PubMed  Google Scholar 

  5. Goldman S, Weiss A, Almalah I, Shalev E. Progesterone receptor expression in human decidua and fetal membranes before and after contractions: possible mechanism for functional progesterone withdrawal. Mol Hum Reprod. 2005;11:269–277.

    Article  CAS  PubMed  Google Scholar 

  6. Khan-Dawood FS, Dawood MY. Estrogen and progesterone receptor and hormone levels in human myometrium and placenta in term pregnancy. Am J Obstet Gynecol. 1984;150:501–505.

    Article  CAS  PubMed  Google Scholar 

  7. Mills AA, Yonish B, Feng L, Schomberg DW, Heine RP, Murtha AP. Characterization of progesterone receptor iso-form expression in fetal membranes. Am J Obstet Gynecol. 2006;195:998–1003.

    Article  CAS  PubMed  Google Scholar 

  8. Oh SY, Kim CJ, Park I, et al. Progesterone receptor isoform (A/B) ratio of human fetal membranes increases during term parturition. Am J Obstet Gynecol. 2005;193:1156–1160.

    Article  CAS  PubMed  Google Scholar 

  9. Taylor AH, McParland PC, Taylor DJ, Bell SC. The progesterone receptor in human term amniochorion and placenta is isoform C. Endocrinology. 2006;147:687–693.

    Article  CAS  PubMed  Google Scholar 

  10. Wu WX, Brooks J, Millar MR, Ledger WL, Glasier AF, McNeilly AS. Immunolocalization of oestrogen and progesterone receptors in the human decidua in relation to prolactin production. Hum Reprod. 1993;8:1129–1135.

    Article  CAS  PubMed  Google Scholar 

  11. Young IR. The comparative physiology of parturition in mammals. Front Horm Res. 2001;27:10–30.

    Article  CAS  PubMed  Google Scholar 

  12. Tulchinsky D, Hobel CJ, Yeager E, Marshall JR. Plasma estrone, estradiol, estriol, progesterone, and 17-hydroxyprogesterone in human pregnancy. I. Normal pregnancy. Am J Obstet Gynecol. 1972;112:1095–1100.

    Article  CAS  PubMed  Google Scholar 

  13. Giangrande PH, Kimbrel EA, Edwards DP, McDonnell DP. The opposing transcriptional activities of the two isoforms of the human progesterone receptor are due to differential cofactor binding. Mol Cell Biol. 2000;20:3102–3115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tung L, Mohamed MK, Hoeffler JP, Takimoto GS, Horwitz KB. Antagonist-occupied human progesterone B-receptors activate transcription without binding to progesterone response elements and are dominantly inhibited by A-receptors. Mol Endocrinol. 1993;7:1256–1265.

    CAS  PubMed  Google Scholar 

  15. Vegeto E, Shahbaz MM, Wen DX, Goldman ME, O’Malley BW, McDonnell DP. Human progesterone receptor A form is a cell- and promoter-specific repressor of human progesterone receptor B function. Mol Endocrinol. 1993;7:1244–1255.

    CAS  PubMed  Google Scholar 

  16. Mesiano S, Chan EC, Fitter JT, Kwek K, Yeo G, Smith R. Progesterone withdrawal and estrogen activation in human parturition are coordinated by progesterone receptor A expression in the myometrium. J Clin Endocrinol Metab. 2002;87:2924–2930.

    Article  CAS  PubMed  Google Scholar 

  17. Chomczynski P, Sacchi N. Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–159.

    Article  CAS  PubMed  Google Scholar 

  18. Madsen G, MacIntyre DA, Mesiano S, Smith R. Progesterone receptor or cytoskeletal protein? Reprod Sci. 2007;14:217–222.

    Article  CAS  PubMed  Google Scholar 

  19. Samalecos A, Gellersen B. Systematic expression analysis and antibody screening do not support the existence of naturally occurring PR-C, PR-M or other truncated progesterone receptor isoforms. Endocrinology. 2008;149:5872–5887.

    Article  CAS  PubMed  Google Scholar 

  20. Mahendroo MS, Porter A, Russell DW, Word RA. The parturition defect in steroid 5alpha-reductase type 1 knockout mice is due to impaired cervical ripening. Mol Endocrinol. 1999;13:981–992.

    CAS  PubMed  Google Scholar 

  21. Andersson S, Minjarez D, Yost NP, Word RA. Estrogen and progesterone metabolism in the cervix during pregnancy and parturition. J Clin Endocrinol Metab. 2008;93:2366–2374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Condon JC, Jeyasuria P, Faust JM, Wilson JW, Mendelson CR. A decline in the levels of progesterone receptor coactivators in the pregnant uterus at term may antagonize progesterone receptor function and contribute to the initiation of parturition. Proc Natl Acad Sci U S A. 2003;100:9518–9523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Mesiano PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merlino, A., Welsh, T., Erdonmez, T. et al. Nuclear Progesterone Receptor Expression in the Human Fetal Membranes and Decidua at Term Before and After Labor. Reprod. Sci. 16, 357–363 (2009). https://doi.org/10.1177/1933719108328616

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719108328616

Key words

Navigation