Skip to main content

Advertisement

Log in

Progesterone Receptors in the Human Pregnancy Uterus: Do they Hold the Key to Birth Timing?

  • Reviews
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The process and timing of human parturition involves a complex hormonal dialogue between maternal and fetal systems that transforms the uterine muscle into the laboring state. Progesterone, through specific progesterone receptors (PRs) in uterine tissues, is key player in this process. For most of pregnancy, progesterone promotes myometrial relaxation and its withdrawal initiates parturition. In women, a functional progesterone withdrawal occurs by changes in PR isoform expression and/or function in myometrial cells. Research in the last 10 to 20 years has shown that progesterone actions are mediated by a variety of PRs including the classic nuclear PRs, PR-A and PR-B that mediate genomic actions, and a family of membrane-bound PRs that mediate non-genomic actions. Herein, we review current understanding of the PRs expressed in the human pregnancy uterus, the pathways through which they mediate progesterone actions, and their roles in controlling myometrial contractility and the parturition process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Corner GW. The Hormones in Human Reproduction. London: Princton University Press; 1946.

    Google Scholar 

  2. Csapo A. Progesterone block. Am J Anat. 1956;98(2):273–291.

    Article  CAS  PubMed  Google Scholar 

  3. Young IR, Renfree MB, Mesiano S, Shaw G, Jenkin G, Smith R. The comparative physiology of parturition in mammals: hormones and parturition in mammals. In: Norris D, Lopez K eds. Hormones and Reproduction in Vertebrates. London: Academic Press; 2010.

    Google Scholar 

  4. Young IR. The comparative physiology of parturition in mammals. Front Horm Res. 2001;27:10–30.

    Article  CAS  PubMed  Google Scholar 

  5. McEwan IJ. Nuclear receptors: one big family. Methods Mol Biol. 2009;505:3–18.

    Article  CAS  PubMed  Google Scholar 

  6. Evans RM. The steroid and thyroid hormone receptor superfamily. Science. 1988;240(4854):889–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Escriva H, Bertrand S, Laudet V. The evolution of the nuclear receptor superfamily. Essays Biochem. 2004;40:11–26.

    Article  CAS  PubMed  Google Scholar 

  8. Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade. Cell. 1995;83(6):835–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Leonhardt SA, Boonyaratanakornkit V, Edwards DP. Progesterone receptor transcription and non-transcription signaling mechanisms. Steroids. 2003;68(10–13):761–770.

    Article  CAS  PubMed  Google Scholar 

  10. Wen DX, Xu YF, Mais DE, Goldman ME, McDonnell DP. The A and B isoforms of the human progesterone receptor operate through distinct signaling pathways within target cells. Mol Cell Biol. 1994;14(12):8356–8364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sartorius CA, Melville MY, Hovland AR, Tung L, Takimoto GS, Horwitz KB. A third transactivation function (AF3) of human progesterone receptors located in the unique N-terminal segment of the B-isoform. Mol Endocrinol. 1994;8:1347–1360.

    CAS  PubMed  Google Scholar 

  12. Kastner P, Krust A, Turcotte B, et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 1990;9(5):1603–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hirata S, Shoda T, Kato J, Hoshi K. Isoform/variant mRNAs for sex steroid hormone receptors in humans. Trends Endocrinol Metab. 2003;14(3):124–129.

    Article  CAS  PubMed  Google Scholar 

  14. Giangrande PH, Kimbrel EA, Edwards DP, McDonnell DP. The opposing transcriptional activities of the two isoforms of the human progesterone receptor are due to differential cofactor binding. Mol Cell Biol. 2000;20(9):3102–3115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Giangrande PH, McDonnell DP. The A and B isoforms of the human progesterone receptor: two functionally different transcription factors encoded by a single gene. Recent Prog Horm Res. 1999;54:291–313.

    CAS  PubMed  Google Scholar 

  16. Dong X, Challis JR, Lye SJ. Intramolecular interactions between the AF3 domain and the C-terminus of the human progesterone receptor are mediated through two LXXLL motifs. J Mol Endocrinol. 2004;32(3):843–857.

    Article  CAS  PubMed  Google Scholar 

  17. Tata JR. Signalling through nuclear receptors. Nat Rev Mol Cell Biol. 2002;3(9):702–710.

    Article  CAS  PubMed  Google Scholar 

  18. Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors. 2006;24(1):21–44.

    Article  CAS  PubMed  Google Scholar 

  19. Merlino AA, Welsh TN, Tan H, et al. Nuclear progesterone receptors in the human pregnancy myometrium: evidence that parturition involves functional progesterone withdrawal mediated by increased expression of progesterone receptor-A. J Clin Endocrinol Metab. 2007;92(5):1927–1933.

    Article  CAS  PubMed  Google Scholar 

  20. Pieber D, Allport VC, Hills F, Johnson M, Bennett PR. Interaction between progesterone receptor isoforms in myometrial cells in human labour. Mol Hum Reprod. 2001;7(9):875–879.

    Article  CAS  PubMed  Google Scholar 

  21. Condon JC, Hardy DB, Kovaric K, Mendelson CR. Up-regulation of the progesterone receptor (PR)-C isoform in laboring myometrium by activation of nuclear factor-kappaB may contribute to the onset of labor through inhibition of PR function. Mol Endocrinol. 2006;20(4):764–775.

    Article  CAS  PubMed  Google Scholar 

  22. Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB. Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem. 2002;277(7):5209–5218.

    Article  CAS  PubMed  Google Scholar 

  23. Graham JD, Yager ML, Hill HD, Byth K, O’Neill GM, Clarke CL. Altered progesterone receptor isoform expression remodels progestin responsiveness of breast cancer cells. Mol Endocrinol. 2005;19(11):2713–2735.

    Article  CAS  PubMed  Google Scholar 

  24. Yudt MR, Berrodin TJ, Jelinsky SA, et al. Selective and opposing actions of progesterone receptor isoforms in human endometrial stromal cells. Mol Cell Endocrinol. 2006;247(1–2):116–126.

    Article  CAS  PubMed  Google Scholar 

  25. Mulac-Jericevic B, Lydon JP, DeMayo FJ, Conneely OM. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc Natl Acad Sci U S A. 2003;100(17):9744–9749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mulac-Jericevic B, Mullinax RA, DeMayo FJ, Lydon JP, Conneely OM. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science. 2000;289(5485):1751–1754.

    Article  CAS  PubMed  Google Scholar 

  27. Avrech OM, Golan A, Weinraub Z, Bukovsky I, Caspi E. Mifepristone (RU486) alone or in combination with a prostaglandin analogue for termination of early pregnancy: a review. Fertil Steril. 1991;56(3):385–393.

    Article  CAS  PubMed  Google Scholar 

  28. Chwalisz K, Stockemann K, Fuhrmann U, Fritzemeier KH, Einspanier A, Garfield RE. Mechanism of action of antiprogestins in the pregnant uterus. Ann N Y Acad Sci. 1995;761:202–223.

    Article  CAS  PubMed  Google Scholar 

  29. Frydman R, Fernandez H, Pons JC, Ulmann A. Mifepristone (RU486) and therapeutic late pregnancy termination: a double-blind study of two different doses. Hum Reprod. 1988;3(6):803–806.

    Article  CAS  PubMed  Google Scholar 

  30. Mahajan DK, London SN. Mifepristone (RU486): a review. Fertil Steril. 1997;68(6):967–976.

    Article  CAS  PubMed  Google Scholar 

  31. Neilson JP. Mifepristone for induction of labour. Cochrane Database Syst Rev. 2000;(4):CD002865.

  32. Challis JRG, Lye SJ. Parturition. In: Knobil E, Neil JD eds. The Physiology of Reproduction. New York, NY: Raven Press; 1994:985–1031.

    Google Scholar 

  33. Hendrix EM, Myatt L, Sellers S, Russell PT, Larsen WJ. Steroid hormone regulation of rat myometrial gap junction formation: effects on cx43 levels and trafficking. Biol Reprod. 1995;52(3):547–560.

    Article  CAS  PubMed  Google Scholar 

  34. Brodt-Eppley J, Myatt L. Changes in expression of contractile FP and relaxatory EP2 receptors in pregnant rat myometrium during late gestation, at labor, and postpartum. Biol Reprod. 1998;59(4):878–883.

    Article  CAS  PubMed  Google Scholar 

  35. Cook JL, Shallow MC, Zaragoza DB, Anderson KI, Olson DM. Mouse placental prostaglandins are associated with uterine activation and the timing of birth. Biol Reprod. 2003;68(2):579–587.

    Article  CAS  PubMed  Google Scholar 

  36. Dong YL, Yallampalli C. Pregnancy and exogenous steroid treatments modulate the expression of relaxant EP(2) and contractile FP receptors in the rat uterus. Biol Reprod. 2000;62(3):533–539.

    Article  CAS  PubMed  Google Scholar 

  37. Fang X, Wong S, Mitchell BF. Effects of RU486 on estrogen, progesterone, oxytocin, and their receptors in the rat uterus during late gestation. Endocrinology. 1997;138(7):2763–2768.

    Article  CAS  PubMed  Google Scholar 

  38. Ou CW, Chen ZQ, Qi S, Lye SJ. Expression and regulation of the messenger ribonucleic acid encoding the prostaglandin F(2alpha) receptor in the rat myometrium during pregnancy and labor. Am J Obstet Gynecol. 2000;182(4):919–925.

    Article  CAS  PubMed  Google Scholar 

  39. Swahn ML, Bygdeman M. The effect of the antiprogestin RU 486 on uterine contractility and sensitivity to prostaglandin and oxytocin. Br J Obstet Gynaecol. 1988;95(2):126–134.

    Article  CAS  PubMed  Google Scholar 

  40. Selinger M, MacKenzie IZ, Gillmer MD, Phipps SL, Ferguson J. Progesterone inhibition in mid-trimester termination of pregnancy: physiological and clinical effects. Br J Obstet Gynaecol. 1987;94(12):1218–1222.

    Article  CAS  PubMed  Google Scholar 

  41. Webster MA, Phipps SL, Gillmer MD. Interruption of first trimester human pregnancy following Epostane therapy. Effect of prostaglandin E2 pessaries. Br J Obstet Gynaecol. 1985;92(9):963–968.

    Article  CAS  PubMed  Google Scholar 

  42. Challis JR, Patel FA, Pomini F. Prostaglandin dehydrogenase and the initiation of labor. J Perinat Med. 1999;27(1):26–34.

    Article  CAS  PubMed  Google Scholar 

  43. Patel FA, Challis JR. Cortisol/progesterone antagonism in regulation of 15-hydroxysteroid dehydrogenase activity and mRNA levels in human chorion and placental trophoblast cells at term. J Clin Endocrinol Metab. 2002;87(2):700–708.

    Article  CAS  PubMed  Google Scholar 

  44. Patel FA, Funder JW, Challis JR. Mechanism of cortisol/progesterone antagonism in the regulation of 15-hydroxyprostaglandin dehydrogenase activity and messenger ribonucleic acid levels in human chorion and placental trophoblast cells at term. J Clin Endocrinol Metab. 2003;88(6):2922–2933.

    Article  CAS  PubMed  Google Scholar 

  45. Garfield RE, Hayashi RH. Appearance of gap junctions in the myometrium of women during labor. Am J Obstet Gynecol. 1981;140(3):254–260.

    Article  CAS  PubMed  Google Scholar 

  46. Di WL, Lachelin GC, McGarrigle HH, Thomas NS, Becker DL. Oestriol and oestradiol increase cell to cell communication and connexin43 protein expression in human myometrium. Mol Hum Reprod. 2001;7(7):671–679.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao K, Kuperman L, Geimonen E, Andersen J. Progestin represses human connexin43 gene expression similarly in primary cultures of myometrial and uterine leiomyoma cells. Biol Reprod. 1996;54(3):607–615.

    Article  CAS  PubMed  Google Scholar 

  48. Soloff MS, Fernstrom MA, Periyasamy S, Soloff S, Baldwin S, Wieder M. Regulation of oxytocin receptor concentration in rat uterine explants by estrogen and progesterone. Can J Biochem Cell Biol. 1983;61(7):625–630.

    Article  CAS  PubMed  Google Scholar 

  49. Adachi S, Oku M. The regulation of oxytocin receptor expression in human myometrial monolayer culture. J Smooth Muscle Res. 1995;31(4):175–187.

    Article  CAS  PubMed  Google Scholar 

  50. Fuchs AR, Periyasamy S, Alexandrova M, Soloff MS. Correlation between oxytocin receptor concentration and responsiveness to oxytocin in pregnant rat myometrium: effects of ovarian steroids. Endocrinology. 1983;113(2):742–749.

    Article  CAS  PubMed  Google Scholar 

  51. Fuchs AR, Periyasamy S, Soloff MS. Systemic and local regulation of oxytocin receptors in the rat uterus, and their functional significance. Can J Biochem Cell Biol. 1983;61(7):615–624.

    Article  CAS  PubMed  Google Scholar 

  52. Ou CW, Chen ZQ, Qi S, Lye SJ. Increased expression of the rat myometrial oxytocin receptor messenger ribonucleic acid during labor requires both mechanical and hormonal signals. Biol Reprod. 1998;59(5):1055–1061.

    Article  CAS  PubMed  Google Scholar 

  53. Walsh SW, Stanczyk FZ, Novy MJ. Daily hormonal changes in the maternal, fetal, and amniotic fluid compartments before parturition in a primate species. J Clin Endocrinol Metab. 1984;58(4):629–639.

    Article  CAS  PubMed  Google Scholar 

  54. Walsh S, Kittinger G, Novy M. Maternal peripheral concentrations of estradiol, estrone, cortisol, and progesterone during late pregnancy in rhesus monkeys (Macaca mulatta) and after experimental fetal anencephaly and fetal death. Am J Obstet Gynecol. 1979;135(1):37–42.

    CAS  PubMed  Google Scholar 

  55. Brenner RM, West NB, McClellan MC. Estrogen and progestin receptors in the reproductive tract of male and female primates. Biol Reprod. 1990;42(1):11–19.

    Article  CAS  PubMed  Google Scholar 

  56. Tseng L, Gurpide E. Effects of progestins on estradiol receptor levels in human endometrium. J Clin Endocrinol Metab. 1975;41(2):402–404.

    Article  CAS  PubMed  Google Scholar 

  57. Haluska GJ, West NB, Novy MJ, Brenner RM. Uterine estrogen receptors are increased by RU486 in late pregnant rhesus macaques but not after spontaneous labor. J Clin Endocrinol Metab. 1990;70(1):181–186.

    Article  CAS  PubMed  Google Scholar 

  58. Boroditsky RS, Reyes FI, Winter JS, Faiman C. Maternal serum estrogen and progesterone concentrations preceding normal labor. Obstet Gynecol. 1978;51(6):686–691.

    CAS  PubMed  Google Scholar 

  59. Tulchinsky D, Hobel CJ, Yeager E, Marshall JR. Plasma estrone, estradiol, estriol, progesterone, and 17-hydroxyprogesterone in human pregnancy. I. Normal pregnancy. Am J Obstet Gynecol. 1972;112(8):1095–1100.

    Article  CAS  PubMed  Google Scholar 

  60. Mesiano S. Myometrial progesterone responsiveness and the control of human parturition. J Soc Gynecol Investig. 2004;11(4):193–202.

    Article  CAS  PubMed  Google Scholar 

  61. Mesiano S, Chan EC, Fitter JT, Kwek K, Yeo G, Smith R. Progesterone withdrawal and estrogen activation in human parturition are coordinated by progesterone receptor A expression in the myometrium. J Clin Endocrinol Metab. 2002;87(6):2924–2930.

    Article  CAS  PubMed  Google Scholar 

  62. Condon JC, Jeyasuria P, Faust JM, Wilson JW, Mendelson CR. A decline in the levels of progesterone receptor coactivators in the pregnant uterus at term may antagonize progesterone receptor function and contribute to the initiation of parturition. Proc Natl Acad Sci U S A. 2003;100(16):9518–9523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Haluska GJ, Wells TR, Hirst JJ, Brenner RM, Sadowsky DW, Novy MJ. Progesterone receptor localization and isoforms in myometrium, decidua, and fetal membranes from rhesus macaques: evidence for functional progesterone withdrawal at parturition. J Soc Gynecol Investig. 2002;9(3):125–136.

    CAS  PubMed  Google Scholar 

  64. Henderson D, Wilson T. Reduced binding of progesterone receptor to its nuclear response element after human labor onset. Am J Obstet Gynecol. 2001;185(3):579–585.

    Article  CAS  PubMed  Google Scholar 

  65. Dong X, Shylnova O, Challis JR, Lye SJ. Identification and characterization of the protein-associated splicing factor as a negative co-regulator of the progesterone receptor. J Biol Chem. 2005;280(14):13329–13340.

    Article  CAS  PubMed  Google Scholar 

  66. Sanborn BM, Ku CY, Shlykov S, Babich L. Molecular signaling through G-protein-coupled receptors and the control of intracellular calcium in myometrium. J Soc Gynecol Investig. 2005;12(7):479–487.

    Article  CAS  PubMed  Google Scholar 

  67. Word RA. Myosin phosphorylation and the control of myometrial contraction/relaxation. Semin Perinatol. 1995;19(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  68. Word RA, Tang DC, Kamm KE. Activation properties of myosin light chain kinase during contraction/relaxation cycles of tonic and phasic smooth muscles. J Biol Chem. 1994;269(34):21596–21602.

    CAS  PubMed  Google Scholar 

  69. Wray S. Uterine contraction and physiological mechanisms of modulation. Am J Physiol. 1993;264(1 pt 1):C1–C18.

    Article  CAS  PubMed  Google Scholar 

  70. Hendricks CH, Brenner WE, Gabel RA, Kerenyi T The effect of progesterone administered intra-amniotically in late human pregnancy Barnes AC (Ed.), Brook Lodge Symposium on Progesterone.1961;Augusta, MI: Brook Lodge Press, 53–64.

    Google Scholar 

  71. Pinto RM, Lerner U, Pontelli H. The effect of progesterone on oxytocin-induced contraction of the three separate layers of human gestational myometrium in the uterine body and lower segment. Am J Obstet Gynecol. 1967;98(4):547–554.

    Article  CAS  PubMed  Google Scholar 

  72. Perusquia M, Garcia-Yanez E, Ibanez R, Kubli-Garfias C. Non-genomic mechanism of action of delta-4 and 5-reduced androgens and progestins on the contractility of the isolated rat myometrium. Life Sci. 1990;47(17):1547–1553.

    Article  CAS  PubMed  Google Scholar 

  73. Lofgren M, Holst J, Backstrom T. Effects in vitro of progesterone and two 5 alpha-reduced progestins, 5 alpha-pregnane-3,20-dione and 5 alpha-pregnane-3 alpha-ol-20-one, on contracting human myometrium at term. Acta Obstet Gynecol Scand. 1992;71(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  74. Perusquia M, Jasso-Kamel J. Influence of 5alpha- and 5beta-reduced progestins on the contractility of isolated human myometrium at term. Life Sci. 2001;68(26):2933–2944.

    Article  CAS  PubMed  Google Scholar 

  75. Chanrachakul B, Pipkin FB, Warren AY, Arulkumaran S, Khan RN. Progesterone enhances the tocolytic effect of ritodrine in isolated pregnant human myometrium. Am J Obstet Gynecol. 2005;192(2):458–463.

    Article  CAS  PubMed  Google Scholar 

  76. Ruddock NK, Shi SQ, Jain S, et al. Progesterone, but not 17-alpha-hydroxyprogesterone caproate, inhibits human myometrial contractions. Am J Obstet Gynecol. 2008;199:e391–e397.

    Google Scholar 

  77. Anderson L, Martin W, Higgins C, Nelson SM, Norman JE. The effect of progesterone on myometrial contractility, potassium channels, and tocolytic efficacy. Reprod Sci. 2009;16(11):1052–1061.

    Article  CAS  PubMed  Google Scholar 

  78. Fu X, Rezapour M, Lofgren M, Ulmsten U, Backstrom T. Unexpected stimulatory effect of progesterone on human myometrial contractile activity in vitro. Obstet Gynecol. 1993;82(1):23–28.

    CAS  PubMed  Google Scholar 

  79. Fu X, Rezapour M, Lofgren M, Ulmsten U, Backstrom T. Antitachyphylactic effects of progesterone and oxytocin on term human myometrial contractile activity in vitro. Obstet Gynecol. 1993;82(4 pt 1):532–538.

    CAS  PubMed  Google Scholar 

  80. Rezapour M, Hongpaisan J, Fu X, Backstrom T, Roomans GM, Ulmsten U. Effects of progesterone and oxytocin on intracellular elemental composition of term human myometrium in vitro. Eur J Obstet Gynecol Reprod Biol. 1996;68(1–2):191–197.

    Article  CAS  PubMed  Google Scholar 

  81. Zhu Y, Bond J, Thomas P. Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc Natl Acad Sci U S A. 2003;100(5):2237–2242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhu Y, Rice CD, Pang Y, Pace M, Thomas P. Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc Natl Acad Sci U S A. 2003;100(5):2231–2236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Falkenstein E, Schmieding K, Lange A, et al. Localization of a putative progesterone membrane binding protein in porcine hepatocytes. Cell Mol Biol (Noisy-le-grand). 1998;44(4):571–578.

    CAS  Google Scholar 

  84. Gerdes D, Wehling M, Leube B, Falkenstein E. Cloning and tissue expression of two putative steroid membrane receptors. Biol Chem. 1998;379(7):907–911.

    CAS  PubMed  Google Scholar 

  85. Falkenstein E, Heck M, Gerdes D, et al. Specific progesterone binding to a membrane protein and related nongenomic effects on Ca2+-fluxes in sperm. Endocrinology. 1999;140(12):5999–6002.

    Article  CAS  PubMed  Google Scholar 

  86. Mifsud W, Bateman A. Membrane-bound progesterone receptors contain a cytochrome b5-like ligand-binding domain. Genome Biol. 2002;3(12):RESEARCH0068.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Peluso JJ, Pappalardo A, Fernandez G, Wu CA. Involvement of an unnamed protein, RDA288, in the mechanism through which progesterone mediates its antiapoptotic action in spontaneously immortalized granulosa cells. Endocrinology. 2004;145(6):3014–3022.

    Article  CAS  PubMed  Google Scholar 

  88. Peluso JJ, Pappalardo A, Losel R, Wehling M. Expression and function of PAIRBP1 within gonadotropin-primed immature rat ovaries: PAIRBP1 regulation of granulosa and luteal cell viability. Biol Reprod. 2005;73(2):261–270.

    Article  CAS  PubMed  Google Scholar 

  89. Mourot B, Nguyen T, Fostier A, Bobe J. Two unrelated putative membrane-bound progestin receptors, progesterone membrane receptor component 1 (PGMRC1) and membrane progestin receptor (mPR) beta, are expressed in the rainbow trout oocyte and exhibit similar ovarian expression patterns. Reprod Biol Endocrinol. 2006;4:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Grazzini E, Guillon G, Mouillac B, Zingg HH. Inhibition of oxytocin receptor function by direct binding of progesterone. Nature. 1998;392(6675):509–512.

    Article  CAS  PubMed  Google Scholar 

  91. Putnam CD, Brann DW, Kolbeck RC, Mahesh VB. Inhibition of uterine contractility by progesterone and progesterone metabolites: mediation by progesterone and gamma amino butyric acidA receptor systems. Biol Reprod. 1991;45(2):266–272.

    Article  CAS  PubMed  Google Scholar 

  92. Fernandes MS, Pierron V, Michalovich D, et al. Regulated expression of putative membrane progestin receptor homologues in human endometrium and gestational tissues. J Endocrinol. 2005;187(1):89–101.

    Article  CAS  PubMed  Google Scholar 

  93. Chapman NR, Kennelly MM, Harper KA, Europe-Finner GN, Robson SC. Examining the spatio-temporal expression of mRNA encoding the membrane-bound progesterone receptor-alpha isoform in human cervix and myometrium during pregnancy and labour. Mol Hum Reprod. 2006;12(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  94. Karteris E, Zervou S, Pang Y, et al. Progesterone signaling in human myometrium through two novel membrane G protein-coupled receptors: potential role in functional progesterone withdrawal at term. Mol Endocrinol. 2006;20(7):1519–1534.

    Article  CAS  PubMed  Google Scholar 

  95. Krietsch T, Fernandes MS, Kero J, et al. Human homologs of the putative G protein-coupled membrane progestin receptors (mPRalpha, beta, and gamma) localize to the endoplasmic reticulum and are not activated by progesterone. Mol Endocrinol. 2006;20(12):3146–3164.

    Article  CAS  PubMed  Google Scholar 

  96. Bogacki M, Silvia WJ, Rekawiecki R, Kotwica J. Direct inhibitory effect of progesterone on oxytocin-induced secretion of prostaglandin F(2alpha) from bovine endometrial tissue. Biol Reprod. 2002;67(1):184–188.

    Article  CAS  PubMed  Google Scholar 

  97. Dunlap KA, Stormshak F. Nongenomic inhibition of oxytocin binding by progesterone in the ovine uterus. Biol Reprod. 2004;70(1):65–69.

    Article  CAS  PubMed  Google Scholar 

  98. Kubli-Garfias C, Hoyo-Vadillo C, Lopez-Nieto E, Ponce-Monter H. Inhibition of spontaneous contractions of the rat pregnant uterus by progesterone metabolites. Proc West Pharmacol Soc. 1983;26:115–118.

    CAS  PubMed  Google Scholar 

  99. Kubli-Garfias C, Medrano-Conde L, Beyer C, Bondani A. In vitro inhibition of rat uterine contractility induced by 5 alpha and 5 beta progestins. Steroids. 1979;34(6 spec no):609–617.

    Article  CAS  PubMed  Google Scholar 

  100. Thornton S, Terzidou V, Clark A, Blanks A. Progesterone metabolite and spontaneous myometrial contractions in vitro. Lancet. 1999;353(9161):1327–1329.

    Article  CAS  PubMed  Google Scholar 

  101. Sheehan PM, Rice GE, Moses EK, Brennecke SP. 5 Beta-dihydroprogesterone and steroid 5 beta-reductase decrease in association with human parturition at term. Mol Hum Reprod. 2005;11(7):495–501.

    Article  CAS  PubMed  Google Scholar 

  102. Mitchell BF, Mitchell JM, Chowdhury J, et al. Metabolites of progesterone and the pregnane X receptor: a novel pathway regulating uterine contractility in pregnancy? Am J Obstet Gynecol. 2005;192(4):1304–1313; discussion 1313-1305.

    Article  CAS  PubMed  Google Scholar 

  103. Astle S, Khan RN, Thornton S. The effects of a progesterone metabolite, 5 beta-dihydroprogesterone, on oxytocin receptor binding in human myometrial membranes. BJOG. 2003;110(6):589–592.

    CAS  PubMed  Google Scholar 

  104. Burger K, Fahrenholz F, Gimpl G. Non-genomic effects of progesterone on the signaling function of G protein-coupled receptors. FEBS Lett. 1999;464(1–2):25–29.

    Article  CAS  PubMed  Google Scholar 

  105. Sergeev PV, Sizov PI, Dukhanin AS, Mineeva EN. [Study of the GABA-benzodiazepine receptor system of the human myometrium]. Biull Eksp Biol Med. 1990;110(10):382–384.

    CAS  PubMed  Google Scholar 

  106. Li Y, Je HD, Malek S, Morgan KG. Role of ERK1/2 in uterine contractility and preterm labor in rats. Am J Physiol Regul Integr Comp Physiol. 2004;287(2):R328–R335.

    Article  CAS  PubMed  Google Scholar 

  107. Kordowska J, Huang R, Wang CL. Phosphorylation of caldesmon during smooth muscle contraction and cell migration or proliferation. J Biomed Sci. 2006;13(2):159–172.

    Article  CAS  PubMed  Google Scholar 

  108. Morgan KG, Gangopadhyay SS. Invited review: cross-bridge regulation by thin filament-associated proteins. J Appl Physiol. 2001;91(2):953–962.

    Article  CAS  PubMed  Google Scholar 

  109. Olson DM. The role of prostaglandins in the initiation of parturition. Best Pract Res Clin Obstet Gynaecol. 2003;17(5):717–730.

    Article  PubMed  Google Scholar 

  110. Keelan JA, Blumenstein M, Helliwell RJ, Sato TA, Marvin KW, Mitchell MD. Cytokines, prostaglandins and parturition-a review. Placenta. 2003;24(suppl A):S33–S46.

    Article  PubMed  CAS  Google Scholar 

  111. Gibb W. The role of prostaglandins in human parturition. Ann Med. 1998;30(3):235–241.

    Article  CAS  PubMed  Google Scholar 

  112. Challis JR, Lye SJ, Gibb W. Prostaglandins and parturition. Ann N Y Acad Sci. 1997;828:254–267.

    Article  CAS  PubMed  Google Scholar 

  113. Novy MJ, Liggins GC. Role of prostaglandins, prostacyclin, and thromboxanes in the physiologic control of the uterus and in parturition. Semin Perinatol. 1980;4(1):45–66.

    CAS  PubMed  Google Scholar 

  114. Khan-Dawood FS, Dawood MY. Estrogen and progesterone receptor and hormone levels in human myometrium and placenta in term pregnancy. Am J Obstet Gynecol. 1984;150(5 pt 1):501–505.

    Article  CAS  PubMed  Google Scholar 

  115. Merlino A, Welsh T, Erdonmez T, et al. Nuclear progesterone receptor expression in the human fetal membranes and decidua at term before and after labor. Reprod Sci. 2009;16(4):357–363.

    Article  CAS  PubMed  Google Scholar 

  116. Lockwood CJ, Stocco C, Murk W, Kayisli UA, Funai EF, Schatz F. Human labor is associated with reduced decidual cell expression of progesterone, but not glucocorticoid, receptors. J Clin Endocrinol Metab. 2010;95(5):2271–2275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Goldman S, Weiss A, Almalah I, Shalev E. Progesterone receptor expression in human decidua and fetal membranes before and after contractions: possible mechanism for functional progesterone withdrawal. Mol Hum Reprod. 2005;11(4):269–277.

    Article  CAS  PubMed  Google Scholar 

  118. Mills AA, Yonish B, Feng L, Schomberg DW, Heine RP, Murtha AP. Characterization of progesterone receptor isoform expression in fetal membranes. Am J Obstet Gynecol. 2006;195(4):998–1003.

    Article  CAS  PubMed  Google Scholar 

  119. Wu WX, Brooks J, Millar MR, Ledger WL, Glasier AF, McNeilly AS. Immunolocalization of oestrogen and progesterone receptors in the human decidua in relation to prolactin production. Hum Reprod. 1993;8(7):1129–1135.

    Article  CAS  PubMed  Google Scholar 

  120. Oh SY, Kim CJ, Park I, et al. Progesterone receptor isoform (A/B) ratio of human fetal membranes increases during term parturition. Am J Obstet Gynecol. 2005;193(3 pt 2):1156–1160.

    Article  CAS  PubMed  Google Scholar 

  121. Taylor AH, McParland PC, Taylor DJ, Bell SC. The progesterone receptor in human term amniochorion and placenta is isoform C. Endocrinology. 2006;147(2):687–693.

    Article  CAS  PubMed  Google Scholar 

  122. Taylor AH, McParland PC, Taylor DJ, Bell SC. The cytoplasmic 60 kDa progesterone receptor isoform predominates in the human amniochorion and placenta at term. Reprod Biol Endocrinol. 2009;7:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Guo CM, Zhu XO, Ni XT, Yang Z, Myatt L, Sun K. Expression of progesterone receptor A form and its role in the interaction of progesterone with cortisol on cyclooxygenase-2 expression in amnionic fibroblasts. J Clin Endocrinol Metab. 2009;94(12):5085–5092.

    Article  CAS  PubMed  Google Scholar 

  124. Samalecos A, Gellersen B. Systematic expression analysis and antibody screening do not support the existence of naturally occurring PR-C, PR-M or other truncated progesterone receptor isoforms. Endocrinology. 2008;149(11):5872–5887.

    Article  CAS  PubMed  Google Scholar 

  125. Luo G, Abrahams VM, Tadesse S, et al. Progesterone inhibits basal and TNFalpha-induced apoptosis in fetal membranes: a novel mechanism to explain progesterone-mediated prevention of preterm birth. Reprod Sci. 2010;17(6):532–539.

    Article  CAS  PubMed  Google Scholar 

  126. El Khwad M, Pandey V, Stetzer B, et al. Fetal membranes from term vaginal deliveries have a zone of weakness exhibiting characteristics of apoptosis and remodeling. J Soc Gynecol Investig. 2006;13(3):191–195.

    Article  PubMed  Google Scholar 

  127. Peluso JJ, Liu X, Gawkowska A, Lodde V, Wu CA. Progesterone inhibits apoptosis in part by PGRMC1-regulated gene expression. Mol Cell Endocrinol. 2010;320(1–2):153–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Stjernholm-Vladic Y, Wang H, Stygar D, Ekman G, Sahlin L. Differential regulation of the progesterone receptor A and B in the human uterine cervix at parturition. Gynecol Endocrinol. 2004;18(1):41–46.

    Article  CAS  PubMed  Google Scholar 

  129. Rodriguez HA, Kass L, Varayoud J, et al. Collagen remodelling in the guinea-pig uterine cervix at term is associated with a decrease in progesterone receptor expression. Mol Hum Reprod. 2003;9(12):807–813.

    Article  CAS  PubMed  Google Scholar 

  130. Mahendroo MS, Porter A, Russell DW, Word RA. The parturition defect in steroid 5alpha-reductase type 1 knockout mice is due to impaired cervical ripening. Mol Endocrinol. 1999;13(6):981–992.

    CAS  PubMed  Google Scholar 

  131. Fonseca EB, Celik E, Parra M, Singh M, Nicolaides KH. Progesterone and the risk of preterm birth among women with a short cervix. N Engl J Med. 2007;357(5):462–469.

    Article  CAS  PubMed  Google Scholar 

  132. Rosenberg KR, Trevathan WR. The evolution of human birth. Sci Am. 2001;285(5):72–77.

    Article  CAS  PubMed  Google Scholar 

  133. Rosenberg K, Trevathan W. Birth, obstetrics and human evolution. BJOG. 2002;109(11):1199–1206.

    Article  PubMed  Google Scholar 

  134. Trevathan WR. Human Birth. An Evolutionary Perspective. Hawthorne, NY: Aldine De Gryter; 1987.

    Google Scholar 

  135. Simpson SW, Quade J, Levin NE, et al. A female Homo erectus pelvis from Gona, Ethiopia. Science. 2008;322(5904):1089–1092.

    Article  CAS  PubMed  Google Scholar 

  136. Gould S. Ever Since Darwin: Reflections in Natural History. New York, NY: Penguin; 1977.

    Google Scholar 

  137. Dorus S, Vallender EJ, Evans PD, et al. Accelerated evolution of nervous system genes in the origin of. Homo sapiens Cell. 2004;119(7):1027–1040.

    CAS  PubMed  Google Scholar 

  138. Clark AG, Glanowski S, Nielsen R, et al. Positive selection in the human genome inferred from human-chimp-mouse orthologous gene alignments. Cold Spring Harb Symp Quant Biol. 2003;68:471–477.

    Article  CAS  PubMed  Google Scholar 

  139. Chen C, Opazo JC, Erez O, et al. The human progesterone receptor shows evidence of adaptive evolution associated with its ability to act as a transcription factor. Mol Phylogenet Evol. 2008;47(2):637–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Meis PJ, Klebanoff M, Thom E, et al. Prevention of recurrent preterm delivery by 17 alpha-hydroxyprogesterone caproate. N Engl J Med. 2003;348(24):2379–2385.

    Article  CAS  PubMed  Google Scholar 

  141. da Fonseca EB, Bittar RE, Carvalho MH, Zugaib M. Prophylactic administration of progesterone by vaginal suppository to reduce the incidence of spontaneous preterm birth in women at increased risk: a randomized placebo-controlled double-blind study. Am J Obstet Gynecol. 2003;188(2):419–424.

    Article  PubMed  CAS  Google Scholar 

  142. American College of Obstetricians and Gynecologists, ACOG Committee Opinion No 419. Use of progesterone to reduce preterm birth. Obstet Gynecol. 2008;112:963–965.

    Article  Google Scholar 

  143. Rouse DJ, Caritis SN, Peaceman AM, et al. A trial of 17 alpha-hydroxyprogesterone caproate to prevent prematurity in twins. N Engl J Med. 2007;357(5):454–461.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Mesiano PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mesiano, S., Wang, Y. & Norwitz, E.R. Progesterone Receptors in the Human Pregnancy Uterus: Do they Hold the Key to Birth Timing?. Reprod. Sci. 18, 6–19 (2011). https://doi.org/10.1177/1933719110382922

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719110382922

Keywords

Navigation