Skip to main content

Advertisement

Log in

Pregnancy Ameliorates the Inhibitory Effects of 2-Methoxyestradiol on Angiogenesis in Primary Sheep Uterine Endothelial Cells

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The estrogen metabolite 2-methoxyestradiol (2-ME2) is one of the most potent antiangiogenic and proapoptotic endogenous steroids. Herein, we investigate the effects of 2-ME2 on angiogenesis of cultured primary ovine uterine artery endothelial cells (UAECs) from nonpregnant follicular (F-UAECs), nonpregnant luteal (L-UAECs), and pregnant ewes (P-UAECs). Uterine artery endothelial cells were treated with vehicle control, 10−8 mol/L 17β-estradiol (17βE2), or 10−9 to 10−6 mol/L 2-ME2. Angiogenesis, apotosis, and cell morphology were assessed by capillary tube formation, flowcytometry, and immunohistochemistry. 17βE2 stimulated while 10−6 mol/L 2-ME2 inhibited capillary tube formation in F-UAECs (P < .05). The inhibitory effects of 2-ME2 on angiogenesis were minimal in L-UAECs and were absent in P-UAECs when compared to controls. 10−6 mol/L 2-ME2 increased apoptosis and inhibited microtubular structure equally in pregnant and nonpregnant UAECs when compared to control or 17βE2 treatments. Thus, 2-ME2 inhibit capillary tube formation in F-UAECs while L-UAECs and P-UAECs are relatively unresponsive to the inhibitory effects of 2ME2 indicating that the pregnancy phenotypic state of the UAECs may modulate the action of 2-ME2 on capillary angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnson ML, Grazul-Bilska AT, Redmer DA, Reynolds LP. Effects of estradiol-17beta on expression of mRNA for seven angiogenic factors and their receptors in the endometrium of ovariectomized (OVX) ewes. Endocrine. 2006;30(3):333–342.

    Article  CAS  PubMed  Google Scholar 

  2. Pepe GJ, Albrecht ED. Regulation of functional differentiation of the placental villous syncytiotrophoblast by estrogen during primate pregnancy. Steroids. 1999;64(9):624–627.

    Article  CAS  PubMed  Google Scholar 

  3. Rubanyi GM, Freay AD, Kauser K, et al. Vascular estrogen receptors and endothelium-derived nitric oxide production in the mouse aorta. Gender difference and effect of estrogen receptor gene disruption. J Clin Invest. 1997;99(10):2429–2437.

    CAS  PubMed  Google Scholar 

  4. Aberdeen GW, Baschat AA, Harman CR, et al. Uterine and fetal blood flow indexes and fetal growth assessment after chronic estrogen suppression in the second half of baboon pregnancy. Am J Physiol Heart Circ Physiol. 2010;298(3):H881–H889.

    Article  CAS  PubMed  Google Scholar 

  5. Chang K, Lubo Z. Review article: steroid hormones and uterine vascular adaptation to pregnancy. Reprod Sci. 2008;15(4):336–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zacharia LC, Gogos JA, Karayiorgou M, et al. Methoxyestradiols mediate the antimitogenic effects of 17beta-estradiol: direct evidence from catechol-O-methyltransferase-knockout mice. Circulation. 2003;108(24):2974–2978.

    Article  CAS  PubMed  Google Scholar 

  7. Dubey RK, Jackson EK, Gillespie DG, et al. Cytochromes 1A1/ 1B1- and catechol-O-methyltransferase-derived metabolites mediate estradiol-induced antimitogenesis in human cardiac fibroblast. J Clin Endocrinol Metab. 2005;90(1):247–255.

    Article  CAS  PubMed  Google Scholar 

  8. Jobe SO, Ramadoss J, Koch JM, Jiang Y, Zheng J, Magness RR. Estradiol-17beta and its cytochrome P450- and catechol-O-methyltransferase-derived metabolites stimulate proliferation in uterine artery endothelial cells: role of estrogen receptor-alpha versus estrogen receptor-beta. Hypertension. 2010;55(4):1005–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. D’Amato RJ, Lin CM, Flynn E, Folkman J, Hamel E. 2-Methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site. Proc Natl Acad Sci U S A. 1994;91(9):3964–3968.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Klauber N, Parangi S, Flynn E, Hamel E, D’Amato RJ. Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. Cancer Res. 1997;57(1):81–86.

    CAS  PubMed  Google Scholar 

  11. Yue TL, Wang X, Louden CS, et al. 2-Methoxyestradiol, an endogenous estrogen metabolite, induces apoptosis in endothelial cells and inhibits angiogenesis: possible role for stress-activated protein kinase signaling pathway and Fas expression. Mol Pharmacol. 1997;51(6):951–962.

    Article  CAS  PubMed  Google Scholar 

  12. Brown JW, Kesler CT, Neary T, Fishman LM. Effects of androgens and estrogens and catechol and methoxy-estrogen derivatives on mitogen-activated protein kinase (ERK(1,2)) activity in SW-13 human adrenal carcinoma cells. Horm Metab Res. 2001;33(3):127–130.

    Article  CAS  PubMed  Google Scholar 

  13. Mabjeesh NJ, Escuin D, LaVallee TM, et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell. 2003;3(4):363–375.

    Article  CAS  PubMed  Google Scholar 

  14. Dubey RK, Gillespie DG, Zacharia LC, et al. Methoxyestradiols mediate the antimitogenic effects of estradiol on vascular smooth muscle cells via estrogen receptor-independent mechanisms. Biochem Biophys Res Commun. 2000;278(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  15. Mannisto PT, Kaakkola S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev. 1999;51(4):593–628.

    CAS  PubMed  Google Scholar 

  16. Merriam GR, MacLusky NJ, Picard MK, Naftolin F. Comparative properties of the catechol estrogens, I: methylation by catechol-O-methyltransferase and binding to cytosol estrogen receptors. Steroids. 1980;36(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  17. Basu A, Haldar S. 2-Methoxyestradiol mediated signaling network in pancreatic cancer. Front Biosci. 2009;14:2170–2180.

    Article  CAS  Google Scholar 

  18. Kanasaki K, Palmsten K, Sugimoto H, et al. Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia. Nature. 2008;453(7198): 1117–1121.

    Article  CAS  PubMed  Google Scholar 

  19. Fotsis T, Zhang Y, Pepper MS, et al. The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature. 1994;368(6468):237–239.

    Article  CAS  PubMed  Google Scholar 

  20. Bird IM, Sullivan JA, Di T, et al. Pregnancy-dependent changes in cell signaling underlie changes in differential control of vasodilator production in uterine artery endothelial cells. Endocrinology. 2000;141(3):1107–1117.

    Article  CAS  PubMed  Google Scholar 

  21. Chen DB, Bird IM, Zheng J, Magness RR. Membrane estrogen receptor-dependent extracellular signal-regulated kinase pathway mediates acute activation of endothelial nitric oxide synthase by estrogen in uterine artery endothelial cells. Endocrinology. 2004;145(1):113–125.

    Article  CAS  PubMed  Google Scholar 

  22. Zheng J, Wen Y, Chen DB, Bird IM, Magness RR. Angiotensin II elevates nitric oxide synthase 3 expression and nitric oxide production via a mitogen-activated protein kinase cascade in ovine fetoplacental artery endothelial cells. Biol Reprod. 2005;72(6): 1421–1428.

    Article  CAS  PubMed  Google Scholar 

  23. Martin SJ, Reutelingsperger CP, McGahon AJ, et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med. 1995;182(5): 1545–1556.

    Article  CAS  PubMed  Google Scholar 

  24. Salih SM, Salama SA, Fadl AA, Nagamani M, Al-Hendy A. Expression and cyclic variations of catechol-O-methyl transferase in human endometrial stroma. Fertil Steril. 2008;90(3): 789–797.

    Article  CAS  PubMed  Google Scholar 

  25. Rajakumar A, Brandon HM, Daftary A, Ness R, Conrad KP. Evidence for the functional activity of hypoxia-inducible transcription factors overexpressed in preeclamptic placentae. Placenta. 2004;25(10):763–769.

    Article  CAS  PubMed  Google Scholar 

  26. Gogos JA, Morgan M, Luine V, et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci U S A. 1998;95(17):9991–9996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zacharia LC, Jackson EK, Gillespie DG, Dubey RK. Catecholamines abrogate antimitogenic effects of 2-hydroxyestradiol on human aortic vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2001;21(11):1745–1750.

    Article  CAS  PubMed  Google Scholar 

  28. Barnea ER, Avigdor S. Coordinated induction of estrogen hydroxylase and catechol-O-methyl transferase by xenobiotics in first trimester human placental explants. J Steroid Biochem. 1990;35(2): 327–331.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sana M. Salih MD, MMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salih, S.M., Kapur, A., Albayrak, S. et al. Pregnancy Ameliorates the Inhibitory Effects of 2-Methoxyestradiol on Angiogenesis in Primary Sheep Uterine Endothelial Cells. Reprod. Sci. 18, 858–867 (2011). https://doi.org/10.1177/1933719111398149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719111398149

Keywords

Navigation