Research
Elasticity-based determination of isovolumetric phases in the human heart

https://doi.org/10.1186/1532-429X-12-60Get rights and content
Under a Creative Commons license
open access

Abstract

Background/Motivation

To directly determine isovolumetric cardiac time intervals by magnetic resonance elastography (MRE) using the magnitude of the complex signal for deducing morphological information combined with the phase of the complex signal for tension-relaxation measurements.

Methods

Thirty-five healthy volunteers and 11 patients with relaxation abnormalities were subjected to transthoracic wave stimulation using vibrations of approximately 25 Hz. A k-space-segmented, ECG-gated gradient-recalled echo steady-state sequence with a 500-Hz bipolar motion-encoding gradient was used for acquiring a series of 360 complex images of a short-axis view of the heart at a frame rate of less than 5.2 ms. Magnitude images were employed for measuring the cross-sectional area of the left ventricle, while phase images were used for analyzing the amplitudes of the externally induced waves. The delay between the decrease in amplitude and onset of ventricular contraction was determined in all subjects and assigned to the time of isovolumetric tension. Conversely, the delay between the increase in wave amplitude and ventricular dilatation was used for measuring the time of isovolumetric elasticity relaxation.

Results

Wave amplitudes decreased during systole and increased during diastole. The variation in wave amplitude occurred ahead of morphological changes. In healthy volunteers the time of isovolumetric elasticity relaxation was 75 ± 31 ms, which is significantly shorter than the time of isovolumetric tension of 136 ± 36 ms (P < 0.01). In patients with relaxation abnormalities (mild diastolic dysfunction, n = 11) isovolumetric elasticity relaxation was significantly prolonged, with 133 ± 57 ms (P < 0.01), whereas isovolumetric tension time was in the range of healthy controls (161 ± 45 ms; P = 0.053).

Conclusion

The complex MRE signal conveys complementary information on cardiac morphology and elasticity, which can be combined for directly measuring isovolumetric tension and elasticity relaxation in the human heart.

Keywords

Wave Amplitude
Shear Elasticity
Magnetic Resonance Elastography
Isovolumetric Relaxation Time
Elasticity Relaxation

Cited by (0)