Skip to main content

Advertisement

Log in

Mitochondria-targeted peptide antioxidants: Novel neuroprotective agents

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Increasing evidence suggests that mitochondrial dysfunction and oxidative stress play a crucial role in the majority of neurodegenerative diseases. Mitochondria are a major source of intracellular reactive oxygen species (ROS) and are particularly vulnerable to oxidative stress. Oxidative damage to mitochondria has been shown to impair mitochondrial function and lead to cell death via apoptosis and necrosis. Because dysfunctional mitochondria will produce more ROS, a feed-forward loop is set up whereby ROS-mediated oxidative damage to mitochondria favors more ROS generation, resulting in a vicious cycle. It is now appreciated that reduction of mitochondrial oxidative stress may prevent or slow down the progression of these neurodegenerative disorders. However, if mitochondria are the major source of intracellular ROS and mitochondria are most vulnerable to oxidative damage, then it would be ideal to deliver the antioxidant therapy to mitochondria. This review will summarize the development of a novel class of mitochondria-targeted antioxidants that can protect mitochondria against oxidative stress and prevent neuronal cell death in animal models of stroke, Parkinson’s disease, and amyotrophic lateral sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beal MF. Mitochondria take center stage in aging and neurodegeneration.Ann Neurol. 2005;58:495–505.

    Article  CAS  PubMed  Google Scholar 

  2. Schapira AH. Mitochondrial involvement in Parkinson’s disease, Huntington’s disease, hereditary spastic paraplegia and Friedreich’s ataxia.Biochim Biophys Acta. 1999;1410:159–170.

    Article  CAS  PubMed  Google Scholar 

  3. Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants.Proc Natl Acad Sci USA. 2003;100: 4078–4083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Palacino JJ, Sagi D, Goldberg MS, et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice.J Biol Chem. 2004;279:18614–18622.

    Article  CAS  PubMed  Google Scholar 

  5. Coskun PE, Beal MF, Wallace DC. Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication.Proc Natl Acad Sci USA. 2004;101:10726–10731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lustbader JW, Cirilli M, Lin C, et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease.Science. 2004;304:448–452.

    Article  CAS  PubMed  Google Scholar 

  7. Crouch PJ, Blake R, Duce JA, et al. Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-betal-42.J Neurosci. 2005;25:672–679.

    Article  CAS  PubMed  Google Scholar 

  8. Beckman JS, Estevez AG, Crow JP, Barbeito L. Superoxide dismutase and the death of motoneurons in ALS.Trends Neurosci. 2001;24:S15-S20.

    Article  CAS  PubMed  Google Scholar 

  9. Mattiazzi M, D’Aurelio M, Gajewski CD, et al. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice.J Biol Chem. 2002;277:29626–29633.

    Article  CAS  PubMed  Google Scholar 

  10. Ferreirinha F, Quattrini A, Pirozzi M, et al. Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport.J Clin Invest. 2004;113:231–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Browne SE, Beal MF. The energetics of Huntington’s disease.Neurochem Res. 2004;29:531–546.

    Article  CAS  PubMed  Google Scholar 

  12. Beal MF. Oxidatively modified proteins in aging and disease.Free Radic Biol Med. 2002;32:797–803.

    Article  CAS  PubMed  Google Scholar 

  13. Reddy PH, Beal MF. Are mitochondria critical in the pathogenesis of Alzheimer’s disease?Brain Res Brain Res Rev. 2005;49:618–632.

    Article  CAS  PubMed  Google Scholar 

  14. Andersen JK. Oxidative stress in neurodegeneration: cause or consequence?Nat Med. 2004;10:S18-S25.

    Article  PubMed  Google Scholar 

  15. Giasson BI, Ischiropoulos H, Lee VM, Trojanowski JQ. The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer’s and Parkinson’s diseases.Free Radic Biol Med. 2002;32:1264–1275.

    Article  CAS  PubMed  Google Scholar 

  16. McLellan ME, Kajdasz ST, Hyman BT, Bacskai BJ. In vivo imaging of reactive oxygen species specifically associated with thioflavine S-positive amyloid plaques by multiphoton microscopy.J Neurosci. 2003;23:2212–2217.

    CAS  PubMed  Google Scholar 

  17. Casoni F, Basso M, Massignan T, et al. Protein nitration in a mouse model of familial amyotrophic lateral sclerosis: possible multifunctional role in the pathogenesis.J Biol Chem. 2005;280: 16295–16304.

    Article  CAS  PubMed  Google Scholar 

  18. Turrens JF. Superoxide production by the mitochondrial respiratory chain.Biosci Rep. 1997;17:3–8.

    Article  CAS  PubMed  Google Scholar 

  19. Muller FL, Liu Y, Van RH. Complex III releases superoxide to both sides of the inner mitochondrial membrane.J Biol Chem. 2004;279: 49064–49073.

    Article  CAS  PubMed  Google Scholar 

  20. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging.Free Radic Biol Med. 2000;29: 222–230.

    Article  CAS  PubMed  Google Scholar 

  21. Imam SZ, Karahalil B, Hogue BA, Souza-Pinto NC, Bohr VA. Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner.Neurobiol Aging. In press.

  22. Navarro A. Mitochondrial enzyme activities as biochemical markers of aging.Mol Aspects Med. 2004;25:37–48.

    Article  CAS  PubMed  Google Scholar 

  23. MacMillan-Crow LA, Crow JP, Thompson JA. Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues.Biochemistry. 1998;37:1613–1622.

    Article  CAS  PubMed  Google Scholar 

  24. Chen JJ, Yu BP. Alterations in mitochondrial membrane fluidity by lipid peroxidation products.Free Radic Biol Med. 1994;17: 411–418.

    Article  CAS  PubMed  Google Scholar 

  25. Laganiere S, Yu BP. Modulation of membrane phospholipid fatty acid composition by age and food restriction.Gerontology. 1993;39:7–18.

    Article  CAS  PubMed  Google Scholar 

  26. Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species.Biochemistry (Mosc). 2005;70:200–214.

    Article  CAS  PubMed  Google Scholar 

  27. Petrosillo G, Ruggiero FM, Paradies G. Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria.FASEB J. 2003;17:2202–2208.

    Article  CAS  PubMed  Google Scholar 

  28. Shidoji Y, Hayashi K, Komura S, Ohishi N, Yagi K. Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation.Biochem Biophys Res Commun. 1999;264:343–347.

    Article  CAS  PubMed  Google Scholar 

  29. Crompton M. The mitochondrial permeability transition pore and its role in cell death.Biochem J. 1999;341:233–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kroemer G, Dallaporta B, Resche-Rigon M. the mitochondrial death/life regulator in apoptosis and necrosis.Annu Rev Physiol. 1998;60:619–642.

    Article  CAS  PubMed  Google Scholar 

  31. Vieira HL, Belzacq AS, Haouzi D, et al. The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, and 4-hydroxynonenal.Oncogene. 2001;20:4305–4316.

    Article  CAS  PubMed  Google Scholar 

  32. Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S. Cytochrome c release from mitochondria proceeds by a two-step process.Proc Natl Acad Sci USA. 2002;99:1259–1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marzo I, Brenner C, Zamzami N, et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis.Science. 1998;281:2027–2031.

    Article  CAS  PubMed  Google Scholar 

  34. Green DR, Reed JC. Mitochondrial and apoptosis.Science. 1998;281:1309–1312.

    Article  CAS  PubMed  Google Scholar 

  35. Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade.Cell. 1997;91:479–489.

    Article  CAS  PubMed  Google Scholar 

  36. Erdelyi K, Bakondi E, Gergely P, Szabo C, Virag L. Pathophysiologic role of oxidative stress-induced poly(ADP-ribose) polymerase-1 activation: focus on cell death and transcriptional regulation.Cell Mol Life Sci. 2005;62:751–759.

    Article  CAS  PubMed  Google Scholar 

  37. Beal MF. Mitochondria, oxidative damage, and inflammation in Parkinson’s disease.Ann NY Acad Sci. 2003;991:120–131.

    Article  CAS  PubMed  Google Scholar 

  38. Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol (−)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration.J Neurochem. 2001;78:1073–1082.

    Article  CAS  PubMed  Google Scholar 

  39. Miller ER, III, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis high-dosage vitamin E supplementation may increase all-cause mortality.Ann Intern Med. 2005;142:37–46.

    Article  CAS  PubMed  Google Scholar 

  40. Beal MF, Matthews RT. Coenzyme Q10 in the central nervous system and its potential usefulness in the treatment of neurodegenerative diseases.Mol Aspects Med. 1997;18 Suppl:S169-S179.

    Article  CAS  PubMed  Google Scholar 

  41. Day BJ. Catalytic antioxidants: a radical approach to new therapeutics.Drug Discov Today. 2004;9:557–566.

    Article  CAS  PubMed  Google Scholar 

  42. Kaul S, Kanthasamy A, Kitazawa M, Anantharam V, Kanthasamy AG. Caspase-3 dependent proteolytic activation of protein kinase C delta mediates and regulates 1-methyl-4-phenylpyridinium (MPP+)-induced apoptotic cell death in dopaminergic cells: relevance to oxidative stress in dopaminergic degeneration.Eur J Neurosci. 2003;18:1387–1401.

    Article  PubMed  Google Scholar 

  43. Pong K, Doctrow SR, Baudry M. Prevention of 1-methyl-4-phenylpyridinium-and 6-hydroxydopamine-induced nitration of tyrosine hydroxylase and neurotoxicity by EUK-134, a superoxide dismutase and catalase mimetic, in cultured dopaminergic neurons.Brain Res. 2000;881:182–189.

    Article  CAS  PubMed  Google Scholar 

  44. Jung C, Rong Y, Doctrow S, Baudry M, Malfroy B, Xu Z. Synthetic superoxide dismutase/catalase mimetics reduce oxidative stress and prolong survival in a mouse amyotrophic lateral sclerosis model.Neurosci Lett. 2001;304:157–160.

    Article  CAS  PubMed  Google Scholar 

  45. Peng J, Stevenson FF, Doctrow SR, Andersen JK. Superoxide dismutase/catalase mimetics are neuroprotective against selective paraquat-mediated dopaminergic neuron death in the substantial nigra: implications for Parkinson disease.J Biol Chem. 2005;280:29194–29198.

    Article  CAS  PubMed  Google Scholar 

  46. Petri S, Kiaei M, Kipiani K, et al. Additive neuroprotective effects of a histone deacetylase inhibitor and a catalytic antioxidant in a transgenic mouse model of amyotrophic lateral sclerosis.Neurobiol Dis. 2006;22:40–49.

    Article  CAS  PubMed  Google Scholar 

  47. Melov S, Schneider JA, Day BJ, et al. A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase.Nat Genet. 1998;18:159–163.

    Article  CAS  PubMed  Google Scholar 

  48. Schriner SE, Linford NJ, Martin GM, et al. Extension of murine life span by overexpression of catalase targeted to mitochondria.Science. 2005;308:1909–1911.

    Article  CAS  PubMed  Google Scholar 

  49. Shen SS, Nauduri D, Anders MW. Targeting antioxidants to mitochondria: a new therapeutic direction.Biochim Biophys Acta. 2006;1762:256–265.

    Article  Google Scholar 

  50. Murphy MP, Smith RA. Drug delivery to mitochondria: the key to mitochondrial medicine.Adv Drug Deliv Rev. 2000;41: 235–250.

    Article  CAS  PubMed  Google Scholar 

  51. Jauslin ML, Meier T, Smith RA, Murphy MP. Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants.FASEB J. 2003;17:1972–1974.

    CAS  PubMed  Google Scholar 

  52. Dhanasekaran A, Kotamraju S, Kalivendi SV, et al. Supplementation of endothelial cells with mitochondria-targeted antioxidants inhibit peroxide-induced mitochondrial iron uptake, oxidative damage, and apoptosis.J Biol Chem. 2004;279: 37575–37587.

    Article  CAS  PubMed  Google Scholar 

  53. Smith RA, Porteous CM, Gane AM, Murphy MP. Delivery of bioactive molecules to mitochondria in vivo.Proc Natl Acad Sci USA. 2003;100:5407–5412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Adlam VJ, Harrison JC, Porteous CM, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury.FASEB J. 2005;19:1088–1095.

    Article  CAS  PubMed  Google Scholar 

  55. Smith RA, Porteous CM, Coulter CV, Murphy MP. Selective targeting of an antioxidant to mitochondria.Eur J Biochem. 1999;263:709–716.

    Article  CAS  PubMed  Google Scholar 

  56. Kelso GF, Porteous CM, Coulter CV, et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties.J Biol Chem. 2001;276:4588–4596.

    Article  CAS  PubMed  Google Scholar 

  57. James AM, Cocheme HM, Smith RA, Murphy MP. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools.J Biol Chem. 2005;280:21295–21312.

    Article  CAS  PubMed  Google Scholar 

  58. Zhao K, Zhao GM, Wu D, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial sweeling, oxidative cell death, and reperfusion injury.J Biol Chem. 2004;279:34682–34690.

    Article  CAS  PubMed  Google Scholar 

  59. Szeto HH. Cell-permeable, mitochondrial-targeted, peptide antioxidants.AAPS J. 2006;8:E277-E283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Winterbourn CC, Parsons-Mair HN, Gebicki S, Gebicki JM, Davies MJ. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides.Biochem J. 2004;381: 241–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao K, Luo G, Zhao GM, Schiller PW, Szeto HH. Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide.J Pharmacol Exp Ther. 2003;304:425–432.

    Article  CAS  PubMed  Google Scholar 

  62. Zhao K, Luo G, Giannelli S, Szeto HH. Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxide in neuronal cell lines.Biochem Pharmacol. 2005;70:1796–1806.

    Article  CAS  PubMed  Google Scholar 

  63. Drin G, Cottin S, Blanc E, Rees AR, Temsamani J. Studies on the internalization mechanism of cationic cell-penetrating peptides.J Biol Chem. 2003;278:31192–31201.

    Article  CAS  PubMed  Google Scholar 

  64. Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent.J Biol Chem. 1996;271:18188–18193.

    Article  CAS  PubMed  Google Scholar 

  65. Szeto HH, Schiller PW, Zhao K, Luo G. Fluorescent dyes alter intracellular targeting and function of cell-penetrating tetrapeptides.FASEB J. 2005;19:118–120.

    CAS  PubMed  Google Scholar 

  66. Haidara K, Morel I, Abalea V, Gascon BM, Denizeau F. Mechanism of tert-butylhydroperoxide induced apoptosis in rat hepatocytes: involvement of mitochondria and endoplasmic reticulum.Biochim Biophys Acta. 2002;1542:173–185.

    Article  CAS  PubMed  Google Scholar 

  67. Piret JP, Arnould T, Fuks B, Chatelain P, Remacle J, Michiels C. Mitochondria permeability transition-dependent tert-butyl hydroperoxide-induced apoptosis in hepatoma HepG2 cells.Biochem Pharmacol. 2004;67:611–620.

    Article  CAS  PubMed  Google Scholar 

  68. Byrne AM, Lemasters JJ, Nieminen AL. Contribution of increased mitochondrial free Ca2+ to the mitochondrial permeability transition induced by tert-butylhydroperoxide in rat hepatocytes.Hepatology. 1999;29:1523–1531.

    Article  CAS  PubMed  Google Scholar 

  69. Nieminen AL, Byrne AM, Herman B, Lemasters JJ. Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species.Am J Physiol. 1997;272:C1286-C1294.

    CAS  PubMed  Google Scholar 

  70. Pias EK, Ekshyyan OY, Rhoads CA, Fuseler J, Harrison L, Aw TY. Differential effects of superoxide dismutase isoform expression on hydroperoxide-induced apoptosis in PC-12 cells.J Biol Chem. 2003;278:13294–13301.

    Article  CAS  PubMed  Google Scholar 

  71. Szeto HH, Lovelace JL, Fridland G, et al. In vivo pharmacokinetics of selective mu-opioid peptide agonists.J Pharmacol Exp Ther. 2001;298:57–61.

    CAS  PubMed  Google Scholar 

  72. Zhao GM, Wu D, Soong Y, et al. Profound spinal tolerance after repeated exposure to a highly selective mu-opioid peptide agonist: role of delta-opioid receptors.J Pharmacol Exp Ther. 2002;302:188–196.

    Article  CAS  PubMed  Google Scholar 

  73. Przyklenk K. Pharmacologic treatment of the stunned myocardium: the concepts and the challenges.Coron Artery Dis. 2001;12:363–369.

    Article  CAS  PubMed  Google Scholar 

  74. Masini E, Cuzzocrea S, Mazzon E, Marzocca C, Mannaioni PF. Salvemini D. Protective effects of M40403, a selective superoxide dismutase mimetic, in myocardial ischaemia and reperfusion injury in vivo.Br J Pharmacol. 2002;136:905–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mackensen GB, Patel M, Sheng H, et al. Neuroprotection from delayed postischemic administration of a metalloporphyrin catalytic antioxidant.J Neurosci. 2001;21:4582–4592.

    CAS  PubMed  Google Scholar 

  76. Wu D, Soong Y, Zhao GM, Szeto HH. A highly potent peptide analgesic that protects against ischemia-reperfusion-induced myocardial stunning.Am J Physiol Heart Circ Physiol. 2002;283: H783-H791.

    Article  CAS  PubMed  Google Scholar 

  77. Song W, Shin J, Lee J, et al. A potent opiate agonist protects against myocardial stunning during myocardial ischemia and reperfusion in rats.Coron Artery Dis. 2005;16:407–410.

    Article  PubMed  Google Scholar 

  78. Cho J, Won K, Wu D, et al. Potent mitochondria-targeted peptides reduce myocardial infarction in rats.Coron Artery Dis. 2006; In press.

  79. Cho S, Szeto HH, Kim HJ, Pinto J.A cell permeable antioxidant peptide SS31 attenuates CD36-mediated ischemic injury via normalizing redox state [abstract]. Washington, DC: Society for Neuroscience; 2005.

    Google Scholar 

  80. Vijayvergiya C, Beal MF, Buck J, Manfredi G. Mutant superoxide dismutase 1 forms aggregates in the brain mitochondrial matrix of amyotrophic lateral sclerosis mice.J Neurosci. 2005;25:2463–2470.

    Article  CAS  PubMed  Google Scholar 

  81. Petri S, Kiaei M, Damiano M, et al. Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis.J Neurochem. 2006;98: 1141–1148.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hazel H. Szeto.

Additional information

Published: August 18, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szeto, H.H. Mitochondria-targeted peptide antioxidants: Novel neuroprotective agents. AAPS J 8, 62 (2006). https://doi.org/10.1208/aapsj080362

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/aapsj080362

Keywords

Navigation