Skip to main content
Log in

NAD metabolism and sirtuins: Metabolic regulation of protein deacetylation in stress and toxicity

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Sirtuins are recently discovered NAD+-dependent deacetylases that remove acetyl groups from acetyllysine-modified proteins, thereby regulating the biological function of their targets. Sirtuins have been shown to increase organism and tissue survival in diverse organisms, ranging from yeast to mammals. Evidence indicates that NAD+ metabolism and sirtuins contribute to mechanisms that influence cell survival under conditions of stress and toxicity. For example, recent work has shown that sirtuins and increased NAD+ biosynthesis provide protection against neuron axonal degeneration initiated by genotoxicity or trauma. In light of their protective effects, sirtuins and NAD+ metabolism could represent therapeutic targets for treatment of acute and chronic neurodegenerative conditions. Our work has focused on elucidating the enzymatic functions of sirtuins and quantifying perturbations of cellular NAD+ metabolism. We have developed mass spectrometry methods to quantitate cellular NAD+ and nicotinamide. These methods allow the quantitation of changes in the amounts of these metabolites in cells caused by chemical and genetic interventions. Characterization of the biochemical properties of sirtuins and investigations of NAD+ metabolism are likely to provide new insights into mechanisms by which NAD+ metabolism regulates sirtuin activities in cells. To develop new strategies to improve cell stress resistance, we have initiated proof of concept studies on pharmacological approaches that target sirtuins and NAD+ metabolism, with the goal of enhancing cell protection against genotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Morris BJ. A forkhead in the road to longevity: the molecular basis of lifespan becomes clearer. J Hypertens. 2005;23:1285–1309.

    Article  PubMed  CAS  Google Scholar 

  2. Mattson MP, Magnus T. Ageing and neuronal vulnerability. Nat Rev Neurosci. 2006;7:278–294.

    Article  PubMed  CAS  Google Scholar 

  3. Mattson MP, Chan SL, Duan W. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev. 2002;82:637–672.

    PubMed  CAS  Google Scholar 

  4. Ingram DK, Zhu M, Mamczarz J, et al. Calorie restriction mimetics: an emerging research field. Aging Cell. 2006;5:97–108.

    Article  PubMed  CAS  Google Scholar 

  5. Guarente L, Imai S, Armstrong CM, Kaeberlein M. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403:795–800.

    Article  PubMed  Google Scholar 

  6. Smith JS, Brachmann CB, Celic I, et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA. 2000;97:6658–6663.

    Article  PubMed  CAS  Google Scholar 

  7. Landry J, Sutton A, Tafrov ST, et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA. 2000;97:5807–5811.

    Article  PubMed  CAS  Google Scholar 

  8. Yang Y, Hou H, Haller EM, Nicosia SV, Bai W. Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J. 2005;24:1021–1032.

    Article  PubMed  CAS  Google Scholar 

  9. Giannakou ME, Partridge L. The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends Cell Biol. 2004;14:408–412.

    Article  PubMed  CAS  Google Scholar 

  10. van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH, Burgering BM. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem. 2004;279:28873–28879.

    Article  PubMed  CAS  Google Scholar 

  11. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004;303:2011–2015.

    Article  PubMed  CAS  Google Scholar 

  12. Kobayashi Y, Furukawa-Hibi Y, Chen C, et al., SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. Int J Mol Med. 2005;16:237–243.

    PubMed  CAS  Google Scholar 

  13. Hisahara S, Chiba S, Matsumoto H, Horio Y. Transcriptional regulation of neuronal genes and its effect on neural functions: NAD-dependent histone deacetylase SIRT1 (Sir2alpha). J Pharmacol Sci. 2005;98:200–204.

    Article  PubMed  CAS  Google Scholar 

  14. Bordone L, Motta MC, Picard F, et al., Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 2006;4:e31.

    Article  PubMed  CAS  Google Scholar 

  15. Solomon JM, Pasupuleti R, Xu L, et al. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol Cell Biol. 2006;26:28–38.

    Article  PubMed  CAS  Google Scholar 

  16. Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA. 2003;100:10794–10799.

    Article  PubMed  CAS  Google Scholar 

  17. Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107:149–159.

    Article  PubMed  CAS  Google Scholar 

  18. Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell. 2001;107:137–148.

    Article  PubMed  CAS  Google Scholar 

  19. Langley E, Pearson M, Faretta M, et al., Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 2002;21:2383–2396.

    Article  PubMed  CAS  Google Scholar 

  20. Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004;23:2369–2380.

    Article  PubMed  CAS  Google Scholar 

  21. Chen J, Zhou Y, Mueller-Steiner S, et al. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem. 2005;280:40364–40374.

    Article  PubMed  CAS  Google Scholar 

  22. Guarente L, Picard F. Calorie restriction—the SIR2 connection. Cell. 2005;120:473–482.

    Article  PubMed  CAS  Google Scholar 

  23. Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 2000;289:2126–2128.

    Article  PubMed  CAS  Google Scholar 

  24. Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA. 2004;101:15998–16003.

    Article  PubMed  CAS  Google Scholar 

  25. Wang Y, Tissenbaum HA. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech Ageing Dev. 2006;127:48–56.

    Article  PubMed  CAS  Google Scholar 

  26. Wood JG, Rogina B, Lavu S, et al.. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004;430:686–689.

    Article  PubMed  CAS  Google Scholar 

  27. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001;410:227–230.

    Article  PubMed  CAS  Google Scholar 

  28. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999;13:2570–2580.

    Article  PubMed  CAS  Google Scholar 

  29. Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science. 2004;305:1010–1013.

    Article  PubMed  CAS  Google Scholar 

  30. Virag L. Structure and function of poly(ADP-ribose)polymerase-1: role in oxidative stress-related pathologies. Curr Vasc Pharmacol. 2005;3:209–214.

    Article  PubMed  CAS  Google Scholar 

  31. Jagtap P, Szabo C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov. 2005;4:421–440.

    Article  PubMed  CAS  Google Scholar 

  32. Beneke S, Diefenbach J, Burkle A. Poly(ADP-ribosyl)ation inhibitors: promising drug candidates for a wide variety of pathophysiologic conditions. Int J Cancer. 2004;111:813–818.

    Article  PubMed  CAS  Google Scholar 

  33. Brachmann CB, Sherman JM, Devine SE, Cameron EE, Pillus L, Boeke JD. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 1995;9:2888–2902.

    Article  PubMed  CAS  Google Scholar 

  34. Sauve AA, Schramm VL. SIR2: the biochemical mechanism of NAD(+)-dependent protein deacetylation and ADP-ribosyl enzyme intermediates. Curr Med Chem. 2004;11:807–826.

    Article  PubMed  CAS  Google Scholar 

  35. Rusche LN, Kirchmaier AL, Rine J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem. 2003;72:481–516.

    Article  PubMed  CAS  Google Scholar 

  36. Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature. 2003;423:181–185.

    Article  PubMed  CAS  Google Scholar 

  37. Kaeberlein M, Andalis AA, Fink GR, Guarente L. High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol. 2002;22:8056–8066.

    Article  PubMed  CAS  Google Scholar 

  38. Sauve AA, Celic I, Avalos J, Deng H, Boeke JD, Schramm VL. Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions. Biochemistry. 2001;40:15456–15463.

    Article  PubMed  CAS  Google Scholar 

  39. Sauve AA, Wolberger C, Schramm VL, Boeke JD. The biochemistry of sirtuins. Annu Rev Biochem. 2006;75:435–465.

    Article  PubMed  CAS  Google Scholar 

  40. Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004;73:417–435.

    Article  PubMed  CAS  Google Scholar 

  41. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434:113–118.

    Article  PubMed  CAS  Google Scholar 

  42. Bouras T, Fu M, Sauve AA, et al., SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem. 2005;280:10264–10276.

    Article  PubMed  CAS  Google Scholar 

  43. Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell. 2004;16:93–105.

    Article  PubMed  CAS  Google Scholar 

  44. Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci USA. 2002;99:13653–13658.

    Article  PubMed  CAS  Google Scholar 

  45. Schwer B, North BJ, Frye RA, Ott M, Verdin E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol. 2002;158:647–657.

    Article  PubMed  CAS  Google Scholar 

  46. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 2005;16:4623–4635.

    Article  PubMed  CAS  Google Scholar 

  47. Liszt G, Ford E, Kurtev M, Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem. 2005;280:21313–21320.

    Article  PubMed  CAS  Google Scholar 

  48. Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124:315–329.

    Article  PubMed  CAS  Google Scholar 

  49. Luo J, Li M, Tang Y, Laszkowska M, Roeder RG, Gu W. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc Natl Acad Sci USA. 2004;101:2259–2264.

    Article  PubMed  CAS  Google Scholar 

  50. Cohen HY, Miller C, Bitterman KJ, et al., Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305:390–392.

    Article  PubMed  CAS  Google Scholar 

  51. Cohen HY, Lavu S, Bitterman KJ, et al.. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell. 2004;13:627–638.

    Article  PubMed  CAS  Google Scholar 

  52. Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24:78–90.

    Article  PubMed  CAS  Google Scholar 

  53. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1:361–370.

    Article  PubMed  CAS  Google Scholar 

  54. Lin SJ, Ford E, Haigis M, Liszt G, Guarente L. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev. 2004;18:12–16.

    Article  PubMed  CAS  Google Scholar 

  55. Anderson RM, Bitterman KJ, Wood JG, et al. Manipulation of a nuclear NAD+salvage pathway delays aging without altering steady-state NAD+levels. J Biol Chem. 2002;277:18881–18890.

    Article  PubMed  CAS  Google Scholar 

  56. Sandmeier JJ, Celic I, Boeke JD, Smith JS. Telomeric and rDNA silencing in Saccharomyces cerevisiae are dependent on a nuclear NAD(+) salvage pathway. Genetics. 2002;160:877–889.

    PubMed  CAS  Google Scholar 

  57. Gallo CM, Jr, Smith DL, Jr, Smith JS. Nicotinamide clearance by Pncl 1 directly regulates Sir2-mediated silencing and longevity. Mol Cell Biol. 2004;24:1301–1312.

    Article  PubMed  CAS  Google Scholar 

  58. Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem. 2002;277:45099–45107.

    Article  PubMed  CAS  Google Scholar 

  59. Sauve AA, Moir RD, Schramm VL, Willis IM. Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition. Mol Cell. 2005;17:595–601.

    Article  PubMed  CAS  Google Scholar 

  60. Lin SJ, Kaeberlein M, Andalis AA, et al.. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature. 2002;418:344–348.

    Article  PubMed  CAS  Google Scholar 

  61. Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem. 2004;279:50754–50763.

    Article  PubMed  CAS  Google Scholar 

  62. Magni G, Amici A, Emanuelli M, Orsomando G, Raffaelli N, Ruggieri S. Enzymology of NAD+homeostasis in man. Cell Mol Life Sci. 2004;61:19–34.

    Article  PubMed  CAS  Google Scholar 

  63. Iqbal J, Zaidi M. TNF regulates cellular NAD+metabolism in primary macrophages. Biochem Biophys Res Commun. 2006;342:1312–1318.

    Article  PubMed  CAS  Google Scholar 

  64. van der Veer E, Nong Z, O'Neil C, Urquhart B, Freeman D, Pickering JG. Pre-B-cell colony-enhancing factor regulates NAD+-dependent protein deacetylase activity and promotes vascular smooth muscle cell maturation. Circ Res. 2005;97:25–34.

    Article  PubMed  CAS  Google Scholar 

  65. Rongvaux A, Shea RJ, Mulks MH, et al. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur J Immunol. 2002;32:3225–3234.

    Article  PubMed  CAS  Google Scholar 

  66. Jia SH, Li Y, Parodo J, et al. Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest. 2004;113:1318–1327.

    PubMed  CAS  Google Scholar 

  67. Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005;2:105–117.

    Article  PubMed  CAS  Google Scholar 

  68. Schmidt MT, Smith BC, Jackson MD, Denu JM. Coenzyme specificity of Sir2 deacetylases: implications for physiological regulation. J Bio Chem. 2004;279:40122–40129.

    Article  CAS  Google Scholar 

  69. Sauve AA, Schramm VL. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry. 2003;42:9249–9256.

    Article  PubMed  CAS  Google Scholar 

  70. Jackson MD, Schmidt MT, Oppenheimer NJ, Denu JM. Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/ protein deacetylases. J Biol Chem. 2003;278:50985–50998.

    Article  PubMed  CAS  Google Scholar 

  71. Feng Y, Paul IA, LeBlanc MH. Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat. Brain Res Bull. 2006;69:117–122.

    Article  PubMed  CAS  Google Scholar 

  72. Ieraci A, Herrera DG. Nicotinamide protects against ethanol-induced apoptotic neurodegeneration in the developing mouse brain. PLoS Med. 2006;3:e101.

    Article  PubMed  CAS  Google Scholar 

  73. Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425:191–196.

    Article  PubMed  CAS  Google Scholar 

  74. Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem. 2005;280:17187–17195.

    Article  PubMed  CAS  Google Scholar 

  75. Bieganowski P, Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+in fungi and humans. Cell. 2004;117:495–502.

    Article  PubMed  CAS  Google Scholar 

  76. Qin W, Wang T, Ho L, et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer's disease amyloid neuropathology by calorie restriction. J Biol Chem. 2006;281:21745–21754.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony A. Sauve.

Additional information

Published: October 6, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, T., Sauve, A.A. NAD metabolism and sirtuins: Metabolic regulation of protein deacetylation in stress and toxicity. AAPS J 8, 72 (2006). https://doi.org/10.1208/aapsj080472

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj080472

Keywords

Navigation