Skip to main content

Advertisement

Log in

Genetic variations in human G protein-coupled receptors: Implications for drug therapy

  • Published:
AAPS PharmSci Aims and scope Submit manuscript

Abstract

Numerous genes encode G protein-coupled receptors (GPCRs)-a main molecular target for drug therapy. Estimates indicate that the human genome contains approximately 600 GPCR genes. This article addresses therapeutic implications of sequence variations in GPCR genes. A number of inactivating and activating receptor mutations have been shown to cause a variety of (mostly rare) genetic disorders. However, pharmacogenetic and pharmacogenomic studies on GPCRs are scarce, and therapeutic relevance of variant receptor alleles often remains unclear. Confounding factors in assessing the therapeutic relevance of variant GPCR alleles include 1) interaction of a single drug with multiple closely related receptors, 2) poorly defined binding pockets that can accommodate drug ligands in different orientations or at alternative receptor domains, 3) possibility of multiple receptor conformations with distinct functions, and 4) multiple signaling pathways engaged by a single receptor. For example, antischizophrenic drugs bind to numerous receptors, several of which might be relevant to therapeutic outcome. Without knowing accurately what role a given receptor subtype plays in clinical outcome and how a sequence variation affects drug-induced signal transduction, we cannot predict the therapeutic relevance of a receptor variant. Genome-wide association studies with single nucleotide polymorphisms could identify critical target receptors for disease susceptibility and drug efficacy or toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Small KM, Forbes SL, Brown KM, Liggett SB. An asn to lys polymorphism in the third intracellular loop of the human alpha 2A-adrenergic receptor imparts enhanced agonist-promoted Gi coupling. J Biol Chem. 2000;275:38518–38523.

    CAS  PubMed  Google Scholar 

  2. Mason DA, Moore JD, Green SA, Liggett SB. A gain-of-function polymorphism in a G-protein coupling domain of the human betal-adrenergic receptor. J Biol Chem. 1999;274:12670–12674.

    CAS  PubMed  Google Scholar 

  3. Turki J, Pak J, Green S, Martin R, Liggett SB. Genetic polymorphisms of the ß2-adrenergic receptor in nocturnal and non-nocturnal asthma. Evidence that Gly 16 correlates with the nocturnal phenotype. J Clin Invest. 1995;95:1635–1641.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Martinez FD, Graves PE, Baldini M, Solomon S, Erickson R, Association between genetic polymorphisms of the ß2-adrenoceptor and response to albuterol in children with and without a history of wheezing. J. Clin. Invest. 1997; 100:3184–3188.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Reihsaus E, Innis M, MacIntyre N, Liggett SB. Mutations in the gene encoding for the ß2 adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol. 1993;8:334–339.

    CAS  PubMed  Google Scholar 

  6. Bray MS, Krushkal J, Li L, et al. Positional genomic analysis identifies the beta (2)-adrenergic receptor gene as a susceptibility locus for human hypertension. Circulation. 2000;101:2877–2882.

    CAS  PubMed  Google Scholar 

  7. Wagoner LE, Craft LL, Singh B, et al. Polymorphisms of the beta (2)-adrenergic receptor determine exercise capacity in patients with heart failure. Circ Res. 2000;86:834–840.

    CAS  PubMed  Google Scholar 

  8. Summerhill E, Leavitt SA, Gidley H, Parry R, Solway J, Ober C. Beta-2 adrenergic receptor polymorphism tied to reduced lung function. Am J Resp Crit Care Med. 2000;162:599–602.

    CAS  PubMed  Google Scholar 

  9. Xu BY, Huang D, Pirskanen R, Lefvert A. Beta2-adrenergic receptor gene polymorphisms in myasthenia gravis (MG). Clin Exp Immunol. 2000;119:156–160.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Dewar JC, Wilkinson J, Wheatley A, et al. The glutamine 27 beta2-adrenoceptor polymorphism is associated with elevated IgE levels in asthmatic families. J Allergy Clin Immunol. 1997;100:261–265.

    CAS  PubMed  Google Scholar 

  11. Green SA, Turki J, Bejarano P, Hall IP, Liggett SB. Influence of beta2-adrenergic receptor genotypes on signal transduction in human airway smooth muscle cells. Am J Respir Cell Mol Biol. 1995;13:25–33.

    CAS  PubMed  Google Scholar 

  12. Meirhaeghe A, Helbecque N, Cottel D, Amouyel P. Beta2-adrenoceptor gene polymorphism, body weight, and physical activity. Lancet. 1999;353:896.

    CAS  PubMed  Google Scholar 

  13. Green SA, Cole G, Jacinto M, Innis M, Liggett SB. A polymorphism of the human ß2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J Biol Chem. 1993;268:23116–23121.

    CAS  PubMed  Google Scholar 

  14. Birnbaumer M. Mutations and diseases of G protein coupled receptors. J Recept Signal Transduct Res. 1995;15:131–160.

    CAS  PubMed  Google Scholar 

  15. Drysdale CM, McGraw DW, Stack CB, et al. Complex promoter and coding region ß2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc Natl Acad Sci U S A. 2000;97:10483–10488.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Mitchell BD, Blangero J, Comuzzie AG, et al. A paired sibling analysis of the ß-3 adrenergic receptor and obesity in Mexican Americans. J Clin Invest. 1998;101:584–587.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Cravchik A, Gejman PV. Functional analysis of the human D5 dopamine receptor missense and nonsense variants: differences in dopamine binding affinities. Pharmacogenetics. 1999;9:199–206.

    CAS  PubMed  Google Scholar 

  18. Blum K, Sheridan PJ, Wood RC, Braverman ER, Chen TJ, Comings DE. Dopamine D2 receptor gene variants: association and linkage studies in impulsive-addictive-compulsive behaviour. Pharmacogenetics. 1995;5:121–141.

    CAS  PubMed  Google Scholar 

  19. Blum K, Braverman ER, Wood RC, et al. Increased prevalence of the Tag I A1 allele of the dopamine receptor gene (DRD2) in obesity with comorbid substance use disorder: a preliminary report. Pharmacogenetics. 1996;6:297–305.

    CAS  PubMed  Google Scholar 

  20. Blum K, Noble EP, Sheridan PJ, et al. Association of the A1 allele of the D2 dopamine receptor gene with severe alcoholism. Alcohol. 1991;8:409–416.

    CAS  PubMed  Google Scholar 

  21. Hietala J, Pohjalainen T, Heikkila-Kallio U, West C, Salaspuro M, Syvalathi E. Allelic association between D2 but not D1 dopamine receptor gene and alcoholism in Finland. Psychiatr Genet. 1997;7:19–25.

    CAS  PubMed  Google Scholar 

  22. Noble EP. The D2 dopamine receptor gene: a review of association studies in alcoholism and phenotypes. Alcohol. 1998;16:33–45.

    CAS  PubMed  Google Scholar 

  23. Thompson J, Thomas N, Singleton A, et al. D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the Al allele. Pharmacogenetics. 1997;7:479–84.

    CAS  PubMed  Google Scholar 

  24. Comings DE, Rosenthal RJ, Lesieur HR, et al. A study of the dopamine D2 receptor gene in pathological gambling. Pharmacogenetics. 1996;6:223–232.

    CAS  PubMed  Google Scholar 

  25. Chen CH, Wei FC, Koong F-J, Hsiao K. Association of Taq1 A polymorphism of dopamine D2 receptor gene and tardive dyskinesia in schizophrenia. Biol Psychiatry. 1997;41:827–829.

    CAS  PubMed  Google Scholar 

  26. Cravchik A, Sibley DR, Geiman PV. Analysis of neuroleptic binding affinities and potencies for the human different D2 dopamine receptor missense variants. Pharmacogenetics. 1999;9:17–23.

    CAS  PubMed  Google Scholar 

  27. Klein C, Brin MF, Kramer P, et al. Association of a missense change in the D2 dopamine receptor with myoclonus dystonia. Proc Natl Acad Sci U S A. 1999;96:5173–5176.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Lannfelt L, Sokoloff P, Martres MP, et al. Amino acid substitution in the dopamine D3 receptor as a useful polymorphism for investigating psychiatric disorders. Psychiatr Genet. 1992;2:249–256.

    Google Scholar 

  29. Dikeos DG, Papadimitrion GN, Avramopoulos D, et al. Association between the dopamine D3 receptor gene locus (DRD3) and unipolar affective disorder. Psychiatr Genet. 1999;9:189–195.

    CAS  PubMed  Google Scholar 

  30. Hawi Z, McCabe U, Straub RE, et al. Examination of new and reported data of the DRD3/MscI polymorphism: no support for the proposed association with schizophrenia. Mol Psychiatry. 1998;3:150–155.

    CAS  PubMed  Google Scholar 

  31. Steen VM, Loevlie R, MacEwan T, McCreadie RG. Dopamine D3 receptor variant and susceptibility to tardive dyskinesia in schizophrenic patients. Mol Psychiatry. 1997;2:139–145.

    CAS  PubMed  Google Scholar 

  32. Basile VS, Masellis M, Badri F, et al. Association of the MscI polymorphism of the dopamine D3 receptor gene with tardive dyskinesia in schizophrenia. Neuropsychopharmacology. 1999;21:17–27.

    CAS  PubMed  Google Scholar 

  33. Sinagnanasundadaram S, Morris AG, Gaitonde EJ, McKenna PJ, Mollon JD, Hunt DM. A cluster of single nucleotide polymorphisms in the 5′-leader of the human dopamine D3 receptor gene (DRD3) and its relationship to schizophrenia. Neurosci Lett. 2000;279:13–16.

    Google Scholar 

  34. Van Tol HHM, Wu CM, Guan HC, et al. Multiple dopamine D4 receptor variants in the human population. Nature. 1992;358:149–152.

    PubMed  Google Scholar 

  35. Newman-Tancredi A, Audinot V, Chaput C, Verriele L, Millan MJ. [35S] Guanosine-5′o-(3-thio)triphosphate binding as a measure of efficacy at human recombinant dopamine D4.4 receptors: actions of antiparkinsonian and antipsychotic drugs. J Pharmacol Exp Ther. 1997;282:181–191.

    CAS  PubMed  Google Scholar 

  36. Gilliland SL, Alper RH. Characterization of dopaminergic compounds at hD2short, hD4.2 and hD2.7 receptors in agonist stimulated [35S]-GTPgammaS binding assays. NS Arch Pharmacol. 2000;361:498–504.

    CAS  Google Scholar 

  37. Perez de Castro I, Ibanez A, Torres P, Saiz-Ruiz J, Fernandez-Piqueras J. Genetic association study between pathological gambling and a functional DNA polymorphism at the D4 receptor gene. Pharmacogenetics. 1997;7:345–348.

    CAS  PubMed  Google Scholar 

  38. Liu IS, Seeman P, Sanyal S, et al. Dopamine D4 receptor variant in Africans, D4 valine194glycine, is insensitive to dopamine and clozapine: report of a homozygous individual. Am J Med Genet. 1996;61:277–282.

    CAS  PubMed  Google Scholar 

  39. Okuyama Y, Ishiguro H, Toru M, Arinami T. A genetic polymorphism in the promoter region of DRD4 associated with expression and schizophrenia. Biochem Biophys Res Comm. 1999;258:292–295.

    CAS  PubMed  Google Scholar 

  40. Holmes C, Arranz MJ, Powell JF, Collier DA, Lovestone S. 5-HT2A and 5-HT2C receptor polymorphisms and psychopathology in late onset Alzheimer’s disease. Hum Mol Genet. 1998;7:1506–1509.

    Google Scholar 

  41. Arranz M, Collier D, Sodhi M, et al. Association between clozapine response and allelic variation in 5-HT2A receptor gene. Lancet 1995;346:281–282.

    CAS  PubMed  Google Scholar 

  42. Joober R, Benkelfat C, Brisebois K, et al. T102C polymorphism in the 5-HT2A gene and schizophrenia: relation to phenotype drug response variability. J Psychiatry Neurosci. 1999;24:141–146.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Murray MJ, Munro J, Sham P, et al. Metaanalysis of studies on genetic variation in 5HT2A receptors and clozapine response. Schiz Res. 1998;32:93–99.

    Google Scholar 

  44. Arranz MJ, Munro J, Bolonna A, et al. Pharmacogenetic prediction of clozapine response. Lancet. 2000;355:1615–1616.

    CAS  PubMed  Google Scholar 

  45. Ozaki N, Lubierman V, Lu SJ, Lappalainen J, Rosenthal NE, Goldman D. A naturally occurring amino acid substitution of the human serotonin 5HT2A receptor influences amplitude and timing of intracellular calcium mobilization. J Neurochem. 1997;68:2186–2193.

    CAS  PubMed  Google Scholar 

  46. Nacmias B, Ricca V, Tedde A, Mezzani B, Rotella CM, Sorbi S. 5-HT2A receptor gene polymorphisms in anorexia nervosa and bulimia nervosa. Neurosci Lett. 1999;277:134–136.

    CAS  PubMed  Google Scholar 

  47. Sodhi MS, Arranz MJ, Curtis D, et al. Association between clozapine response and allelic variation in the 5-HT2C receptor gene. Neuroreport. 1995;7:169–172.

    CAS  PubMed  Google Scholar 

  48. Yuan X, Ishiyama-Shigemoto S, Koyama W, Nonaka K. Identification of polymorphic loci in the promoter region of the serotonin 5HT2C receptor and their association with obesity and type II diabetes. Diabetologica 2000;43:373–376.

    CAS  Google Scholar 

  49. Bruss M, Bonisch H, Buhlen M, Nothen MM, Propping P, Gothert M. Modified ligand binding to the naturally occurring Cys-124 variant of the human serotonin 5-HT1B receptor Pharmacogen. 1999;9:1;95–102.

    CAS  Google Scholar 

  50. Tsai SJ, Liu HC, Liu TY, Wang YC, Hong CJ. Association analysis of the 5-HT6 receptor polymorphism C267T in Alzheimer’s disease. Neurosci Lett. 1999;276:138–139.

    CAS  PubMed  Google Scholar 

  51. Sasaki Y, Ihara K, Ahmed S, et al. Lack of association between atopic asthma and polymorphisms of the histamine H1 receptor, histamine H2 receptor, and N-methyltransferase genes. Immunogenetics. 2000;51:238–240.

    CAS  PubMed  Google Scholar 

  52. Orange PR, Heath PR, Wright SR, Ramchand CM, Kolkeivicz L, Pearson RC. Individuals with schizophrenia have an increased incidence of the H2R649G allele for the histamine H2 receptor. Mol Psychiat. 1996;6:466–469.

    Google Scholar 

  53. Ito C, Morriset S, Krebs MO, et al. Histamine H2 gene variants: lack of association with schizophrenia. Mol Psychiat. 2000;5:159–164.

    CAS  Google Scholar 

  54. Morisset S, Rouleau A, Ligneau X, et al. High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature. 2000;408:860–864.

    CAS  PubMed  Google Scholar 

  55. Rice GI, Foy CA, Grant PJ. Angiotensin converting enzyme and angiotensin II type 1-receptor gene polymorphisms and risk of ischaemic heart disease. Cardiovasc Res. 1999;41:746–753.

    CAS  PubMed  Google Scholar 

  56. van Geel PP, Pinto YM, Zwinderman AH, et al. Increased risk for ischaemic events is related to combined RAS polymorphism. Heart. 2001;85:458–462.

    PubMed Central  PubMed  Google Scholar 

  57. Benetos A, Cambien F, Gautier S, Ricard S, et al. Influence of the angiotensin II type 1 receptor gene polymorphism on the effects of perindopril and nitrendipine arterial stiffness in hypertensive individuals. Hypertension. 1996;28:1081–1084.

    CAS  PubMed  Google Scholar 

  58. van Geel PP, Pinto YM, Buikema H, van Gilst WH. Is the A1166C polymorphism of the angiotensin II type 1 receptor involved in cardiovascular disease? Eur Heart J. 1998;19:G13-G17.

    PubMed  Google Scholar 

  59. Henrion D, Amant C, Benessiano J, et al. Angiotensin II type 1 receptor gene polymorphism is associated with an increased vascular reactivity in the human mammary artery in vitro. J Vasc Res. 1998;35:356–362.

    CAS  PubMed  Google Scholar 

  60. Nicaud V, Poirier O, Behague I, et al. Polymorphisms of the endothelin-A and-B receptor genes in relation to blood pressure and myocardial infarction: the Etude Cas-Temoins sur l’Infarctus du Myocarde (ECTIM) Study. Am J Hypertens. 1999;12:304–310.

    CAS  PubMed  Google Scholar 

  61. Puffenberger EG, Hosoda K, Washington SS, et al. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung’s disease. Cell. 1994;79:1257–1266.

    CAS  PubMed  Google Scholar 

  62. Osuga Y, Hayashi M, Kudo M, Conti M, Kobilka B, Hsueh AJ. Co-expression of defective luteinizing hormone receptor fragments partially reconstitutes ligand-induced signal generation. J Biol Chem. 1997;272:25006–25012.

    CAS  PubMed  Google Scholar 

  63. Shenker A, Laue L, Kosugi S, Merendino JJ, Minegishi T, Cutler GB. A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature. 1993;365:652–654.

    CAS  PubMed  Google Scholar 

  64. Evans BA, Bowen DJ, Smith PJ, Clayton PE, Gregory JW. A new point mutation in the luteinising hormone receptor gene in familial and sporadic male limited precocious puberty: genotype does not always correlate with phenotype. J Med Genet. 1996;33:143–147.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Gromoll J, Simoni M, Norhoff V, Behre HM, De Geyter C, Nieschlag E. Functional and clinical consequences of mutations in the FSH receptor. Mol Cell Endocrin. 1996;125:177–182.

    CAS  Google Scholar 

  66. Valverde P, Healy E, Jackson I, Rees JL, Thody AJ. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nature Gen. 1995;11:328–330.

    CAS  Google Scholar 

  67. Valverde P, Healy E, Sikkink S, et al. The Asp84Glu variant of the melanocortin 1 receptor (MC1R) is associated with melanoma. Hum Mol Gen. 1996;5:1665–1666.

    Google Scholar 

  68. Xu X, Thornwall M, Lundin LG, Chhajlani V. Val92Met variant of the melanocyte stimulating hormone receptor gene. Nat Genet. 1996;14:384.

    CAS  PubMed  Google Scholar 

  69. Koppula SV, Robbins LS, Lu D, et al. Identification of a common polymorphism in the coding sequence of the human MSH receptor (MC1R) with possible biological effects. Hum Mutat. 1997;9:30–36.

    CAS  PubMed  Google Scholar 

  70. Vaisse C, Clement K, Durant E, Hercberg S, Guy-Grand B, Froguel P. Melanocortin-4 mutations are frequent and heterogeneous cause of morbid obesity. J Clin Invest. 2000;106:253–262.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Hinney A, Schmidt A, Nottebom K, et al. Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly associated obesity in humans. J Clin Endocrinol Metab. 1999;84:1483–1486.

    CAS  PubMed  Google Scholar 

  72. Tsigos C, Arai K, Hung W, Chrousos GP. Hereditary isolated glucocorticoid deficiency is associated with abnormalities of the adrenocorticotropin receptor gene. J Clin Invest. 1993;92:2458–2461.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Clark AJ, McLoughlin L, Grossman A. Familial glucocorticoid deficiency associated with point mutation in the adrenocorticoid receptor. Lancet. 1993;341:461–462.

    CAS  PubMed  Google Scholar 

  74. Weber A, Kapas S, Hinson J, Grant DB, Grossman A, Clark AJ. Functional characterization of the cloned human ACTH receptor: impaired responsiveness of a mutant receptor in familial glucocorticoid deficiency. Biochem Biophys Res Comm. 1993;197:172–178.

    CAS  PubMed  Google Scholar 

  75. Tsigos C, Arai K, Latronico AC, DiGeorge AM, Rapaport R, Chrousos GP. A novel mutation of the adrenocorticotropin receptor (ACTH-R) gene in a family with the syndrome of isolated glucocorticoid deficiency, but no ACTH-R abnormalities in two families with the triple A syndrome. J Clin Endocrinol Metab. 1995;80:2186–2189.

    CAS  PubMed  Google Scholar 

  76. Reincke M, Mora P, Beuschlein F, Arlt W, Chrousos GP, Allolio B. Deletion of the adrenocorticotropin receptor gene in human adrenocortical tumors: implications for tumorigenesis. J Clin Endocrinol Metab. 1997;82:3054–3058.

    CAS  PubMed  Google Scholar 

  77. Schipani E, Kruse K, Juppner H. A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science. 1995;268:98–100.

    CAS  PubMed  Google Scholar 

  78. Schipani E, Langman CB, Parfitt AM, et al. Constitutively activated receptors for parathyroid hormone and parathyroid hormone-related peptide in Jansen’s metaphysical chondrodysplasia. N Engl J Med. 1996;335:708–714.

    CAS  PubMed  Google Scholar 

  79. Schipani E, Langman C, Hunzelman J, et al. A novel parathyroid hormone (PTH)/PTH-related peptide receptor mutation in Jansen’s metaphyseal chondrodysplasia. J Clin Endocrinol Metab. 1999;84:3052–3057.

    CAS  PubMed  Google Scholar 

  80. Karaplis AC, He B, Nguyen MT, et al. Inactivating mutation in the human parathyroid hormone receptor 1 gene in Blomstrand chondrodysplasia. Endocrinology. 1998;139:5255–5258.

    CAS  PubMed  Google Scholar 

  81. Karperien M, van der Harten HJ, van Schooten R, et al. A fiame-shift mutation in the type I parathyroid hormone (PTH)/PTH-related peptide receptor causing Blomstrand lethal osteochondrodysplasia. J Clin Endocrinol Metab. 1999;84:3713–3720.

    CAS  PubMed  Google Scholar 

  82. Jobert AS, Zhang P, Couvineau A, et al. Absence of functional receptors for parathyroid hormone and parathyroid hormone-related peptide in Blomstrand Chondrodysplasia. J Clin Invest. 1998;102:34–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Cuddihy RM, Dutton CM, Bahn RS. A polymorphism in the extracellular domain of the thyrotropin receptor is highly associated with autoimmune thyroid disease in females. Thyroid. 1995;5:89–95.

    CAS  PubMed  Google Scholar 

  84. Cuddihy RM, Schaid DS, Bahn RS. Multivariate analysis of HLA loci in conjunction with a thyrotropin receptor codon 52 polymorphism in conferring risk of Graves’ disease. Thyroid. 1996;6:261–265.

    CAS  PubMed  Google Scholar 

  85. Kaczur V, Szalai C, Falus A, Nagy Z, Krajczar G, Balazs C. Polymorphism of the 52 triplet gene (nucleotide 253) of the TSH receptor in Basedow-Graves patients and in healthy controls. Orv Hetil. 1997;138:1625–1628.

    CAS  PubMed  Google Scholar 

  86. Gabriel EM, Bergert ER, Grant CS, van Heerden JA, Thompson GB, Morris JC. Germline polymorphism of codon 727 of human thyroid-stimulating hormone receptor is associated with toxic multinodular goiter. J Clin Endocrinol Metab. 1999;84:3328–3335.

    CAS  PubMed  Google Scholar 

  87. Parma J, Duprez L, Van Sande J, Cochaux P, Gervy C, Mockel J, Dumont J, Vassart G. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature. 1993;365:649–651.

    CAS  PubMed  Google Scholar 

  88. Rosenthal W, Seibold A, Antaramian A, et al. Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature. 1992;359:233–235.

    CAS  PubMed  Google Scholar 

  89. Schoneberg T, Yun J, Wenkert D, Wess J. Functional rescue of mutant V2 vasopressin receptors causing nephrogenic diabetes insipidus by a co-expressed receptor polypeptide. EMBO J. 1996;15:1283–1291.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Birnbaumer M, Gilbert S, Rosenthal W. An extracellular congenital nephrogenic diabetes insipidus mutation of the vasopressin receptor reduces cell surface expression, affinity for ligand, and coupling to the Gs/adenylyl cyclase system. Mol Endocrin. 1994;8:886–894.

    CAS  Google Scholar 

  91. Birnbaumer M, Gilbert S, Rosenthal W. Nephrogenic diabetes insipidus. A V2 vasopressin receptor unable to stimulate adenylyl cyclase. J Biol Chem. 1993;268:13030–13033.

    PubMed  Google Scholar 

  92. Bond C, LaForge KS, Tian M, Melia D, Zhang S, et al. Single-nucleotide polymorphism in the human μ opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Nat Acad Sci U S A. 1998;95:9608–9613.

    CAS  Google Scholar 

  93. Sander T, Berlin W, Gscheidel N, Wendel B, Janz D, Hoehe MR. Genetic variation of the human μ-opioid receptor and susceptibility to idiopathic absence epilepsy. Epilepsy Res. 2000;39:57–61.

    CAS  PubMed  Google Scholar 

  94. Single nucleotide polymorphisms in the human μ opioid receptor gene alter G protein coupling and calmodulin binding. Wang D, Quillan JM, Winans K, Lucas JL, Sadee W. J. Biol. Chem., 2001, in press.

  95. Koch T, Kroslak T, Mayer P, Raulf E, Hoellt V. Site mutation in the rat μ-opioid receptor demonstrates the involvement of calcium/calmodulin-dependent protein kinase II in agonist-mediated desensitization. J Neurochem. 1997;69:1767–1770.

    CAS  PubMed  Google Scholar 

  96. Befort K, Filliol D, Decaillot FM, Gaveriaux-Ruff C, Hoehe MR, Kieffer BL. A single nucleotide polymorphic mutation in the human μ-opioid receptor severely impairs receptor signaling. J Biol Chem. 2001;276:3130–3137.

    CAS  PubMed  Google Scholar 

  97. Hoehe J, Koepke K, Wendel B, et al. Sequence variability and candidate gene analysis in complex disease: association of μ opioid receptor gene variation with substance dependence. Human Mol Gen. 2000;9:2895–2908.

    CAS  Google Scholar 

  98. Mayer P, Rochlitz H, Rauch E, et al. Association between d-opioidreceptor gene polymorphism and heroin dependence in man. Neuroreport. 1997;8:2547–2550.

    CAS  PubMed  Google Scholar 

  99. Franke P, Nothen M, Wang T, et al. Human d-opioidreceptor gene and susceptibility to heroin and alcohol dependence. Am J Med Genet. 1999;88:462–464.

    CAS  PubMed  Google Scholar 

  100. compton SJ, Cairns JA, Palmer KJ, Al-Ani B, Hollenberg MD, Walls AF. A polymorphic protease-activated receptor 2 (PAR2) displaying reduced sensitivity to trypsin and differential responses to PAR agonists. J Biol Chem. 2000;275:39207–39212.

    CAS  PubMed  Google Scholar 

  101. Gwinn MR, Sharma A, De Nardin E. Single nucleotide polymorphisms of the N-formyl peptide receptor in localized juvenile periodontitis. J Periodontol. 1999;70:1194–1201.

    CAS  PubMed  Google Scholar 

  102. Smith MV, Dean M, Carrington M, et al. Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Science. 1997;277:959–965.

    CAS  PubMed  Google Scholar 

  103. O’Brien TR, McDermott DH, Ioannidis JP, et al. Effect of chemokine receptor gene polymorphisms on the response to potent antiretroviral therapy. AIDS. 2000;14:821–826.

    PubMed  Google Scholar 

  104. Hizawa N, Yamaguchi E, Furuya K, Jinushi E, Ito A, Kawakami Y. The role of the C-C chemokine receptor 2 gene polymorphism V64I (CCR2-64I) in sarcoidosis in a Japanese population. Am J Respir Crit Care Med. 1999;159:2021–2023.

    CAS  PubMed  Google Scholar 

  105. Mellado M, Rodriguez-Frade JM, Vila-Coro AJ, de Ana AM, Martinez-A C. Chemokine control of HIV-1 infection. Nature. 1999;400:723–724.

    CAS  PubMed  Google Scholar 

  106. Szalai C, Csaszar A, Czinner A, Szabo T, Panczel P, Madacsy L, Falus A. Chemokine receptor CCR2 and CCR5 polymorphisms in children with insulin-dependent diabetes mellitus. Pediatr Res. 1999;46:82–84.

    CAS  PubMed  Google Scholar 

  107. Zimmermann N, Bernstein JA, Rothenberg ME. Polymorphisms in the human CC chemokine receptor-3 gene. Biochim Biophys Acta. 1998;1442:170–6107.

    CAS  PubMed  Google Scholar 

  108. Bream JH, Young HA, Rice N, et al. CCR5 promoter alleles and specific DNA binding factors. Science. 1999;284:223a.

    Google Scholar 

  109. Martin MP, Dean M, Smith MW, et al. Genetic acceleration of AIDS progression by a promoter variant of CCR5. Science. 1998;282:1907–1910.

    CAS  PubMed  Google Scholar 

  110. McDermott DH, Zimmermann PA, Guignard F, Kleeberger CA, Leitman SF, the Multicenter AIDS Cohort Study (MACS), Murphy PM. CCR5 promoter polymorphism and HIV-1 disease progression. Lancet. 1998;352:866–870.

    CAS  PubMed  Google Scholar 

  111. Samson M, Libert F, Doranz BJ, et al. Resistance to HIV infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996; 382:722–725.

    CAS  PubMed  Google Scholar 

  112. Rabkin CS, Yang Q, Goedert JJ, Nguyen G, Mitsuya H, Sei S. Chemokine and chemokine receptor gene variants and risk of non-Hodgkin’s lymphoma in human immunodeficiency virus-1-infected individuals. Blood. 1999;93:1838–1842.

    CAS  PubMed  Google Scholar 

  113. Faure S, Meyer L, Costagliola D, et al. Rapid progression to AIDS in HIV—individuals with a structural variant of the chemokine receptor CX3CR1. Science. 2000;287:2274–2277.

    CAS  PubMed  Google Scholar 

  114. Birkenbach M, Josefsen Kyalamanchili R, Lenoir G, Kieff E. Epstein-Barr virus induced genes: first lymphocyte-specific G protein-coupled peptide receptors. J Virol. 1993;67:2209–2220.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Gao JL, Murphy PM. Human cytomegalovirus open reading frame US28 encodes a functional b-chemokine receptor. J Biol Chem. 1994;269:28539–28542.

    CAS  PubMed  Google Scholar 

  116. Pleskoff O, Treboute C, Brelot A, Heveker N, Seman M, Alozon M. Identification of a chemokine receptor encode by human cytomegalovirus as a cofactor for HIV-1 entry. Science. 1997;276:1874–1878.

    CAS  PubMed  Google Scholar 

  117. Bais C, Santomasso B, Coso O, et al. G protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature. 1998;391:86–89.

    CAS  PubMed  Google Scholar 

  118. Lam CW, Xie J, To KF, et al. A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene. 1999;18:833–836.

    CAS  PubMed  Google Scholar 

  119. Xie J, Murone M, Luoh SM, et al. Activating smoothened mutations in sporadic basal cell carcinma. Nature. 1998;391:90–92.

    CAS  PubMed  Google Scholar 

  120. Talpale J, Chen JK, Cooper MK, et al. Effects of oncogenic mutations in smoothened and patched can be reversed by cyclopamine. Nature. 2000;406:1005–1009.

    Google Scholar 

  121. Hirata T, Kakizuka A, Ushikubi F, Fuse I, Okuma M, Narumiya S. Arg60-to-leu mutation of the human thromboxane A2 receptor in a dominantly inherited bleeding disorder. J Clin Invest. 1994;94:1662–1667.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Hirata T, Ushikubi F, Kakizuka A, Okuma M, Narumiya S. Two thromboxane A(2) receptor isoforms in human platelets: opposite coupling to adenylyl cyclase with different sensitivity to arg60-to-leu mutation. J Clin Invest. 1996;97:949–956.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Hollopeter G, Jantzen H-M, Vincent D, et al. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature. 2001;409:202–207.

    CAS  PubMed  Google Scholar 

  124. Ward BK, Stuckey BG, Gutteridge DH, Laing NG, Pullan PT, Ratajczak T. A novel mutation (L174R) in the Ca2+-sensing receptor gene associated with familial hypocalciuric hypercalcemia. Hum Mutat. 1997;10:233–235.

    CAS  PubMed  Google Scholar 

  125. Aida K, Koishi S, Inoue M, Nakazato M, Tawata M, Onaya T. Familial hypocalciuric hypercalcemia associated with mutation in the human Ca (2+)-sensing receptor gene. J Clin Endocrinol Metab. 1995;80:2594–2598.

    CAS  PubMed  Google Scholar 

  126. Chou Yh, Pollak MR, Brandi ML, et al. Mutations in the human Ca (2+)-sensing receptor gene that cause familial hypocalciuric hypercalcemia. Am J Hum Genet. 1995;56:1075–1079.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Pollak MR, Brown EM, Chou YH, et al. Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciurie hypercalcemia and neonatal severe hyperparathyroidism. Cell. 1993;75:1297–1303.

    CAS  PubMed  Google Scholar 

  128. Pollak MR, Brown EM, Estep HL, et al. Autosomal dominant hypocalcemia caused by a Ca (2+)-sensing receptor gene mutation. Nat Genet. 1994;8:303–307.

    CAS  PubMed  Google Scholar 

  129. Pearce SH, Williamson C, Kifor O, et al. A familial syndrome of hypocalcemia with hypocalciuria due to mutations in the calcium-sensing receptor. N Engl J Med. 1996;335:1115–1122.

    CAS  PubMed  Google Scholar 

  130. Rao VR, Cohen GB, Oprian DD. Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature. 1994;367:639–642.

    CAS  PubMed  Google Scholar 

  131. Dryja TP, Berson EL, Rao VR, Oprian DD. Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Nat Genet. 1993;4:280–283.

    CAS  PubMed  Google Scholar 

  132. Robinson PR, Cohen GB, Zhukovsky EA, Oprian DD. Constitutively active mutants of rhodopsin. Neuron. 1992;9:719–725.

    CAS  PubMed  Google Scholar 

  133. Robinson PR, Cohen GB, Zhukovsky EA, Oprian DD. Constitutive activation of opsin: influence of charge at position 134 and size at position 296. Biochemistry. 1993;32:6111–6115.

    PubMed  Google Scholar 

  134. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291:1304–1350.

    CAS  PubMed  Google Scholar 

  135. Lander ES, Linton LM, Birren B, et al. International sequencing consortium. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    CAS  PubMed  Google Scholar 

  136. Graul RC, Sadee W. Evolutionary relationships among G protein-coupled receptors using a clustered database approach. AAPS PharmSci. 2001; 2001; 3 (2) article 12 (http://www.pharmsci.org/scientificjournals/pharmsci/journal/01_12.html).

  137. Namba T, Sugimoto Y, Negishi M, et al. Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature. 1993;365:166–169.

    CAS  PubMed  Google Scholar 

  138. Gudermann T, Kalkbrenner F, Schultz G. Diversity and selectivity of receptor-G protein interaction. Ann Rev Pharmacol Toxicol. 1996;36:429–459.

    CAS  Google Scholar 

  139. Migeon JC, Nathanson NM. Differential regulation of cAMP-mediated gene transcription by m1 and m4 muscarinic acetylcholine receptors. J Biol Chem. 1994;269:9767–9773.

    CAS  PubMed  Google Scholar 

  140. Moro O, Lameh J, Högger P, Sadee W. Hydrophobic amino acid in the il loop plays a key role in receptor-G protein coupling. J Biol Chem. 1993;268:22273–22276.

    CAS  PubMed  Google Scholar 

  141. Moro O, Shockley MS, Lameh J, Sadee W. Overlapping multisite domains of the muscarinic cholinergic Hm1 receptor involved in signal transduction and sequestration. J Biol Chem. 1994;269:6651–6655.

    CAS  PubMed  Google Scholar 

  142. Burstein ES, Spalding TA, Brann MR. The second intracellular loop of the m5 muscarinic receptor is the switch which enables G-protein coupling. J Biol Chem. 1998;273:24322–24327.

    CAS  PubMed  Google Scholar 

  143. Heuss C, Gerber U. G-protein-independent signaling by G-protein-coupled receptors. TiNS. 2000;23:469–475.

    CAS  PubMed  Google Scholar 

  144. Wang D, Sadee W, Quillan JM. Calmodulin binding to G protein-coupling domain of opioid receptors. J Biol Chem 1999;274:22081–22088.

    CAS  PubMed  Google Scholar 

  145. Wang D, Surratt CK, Sadee W. Calmodulin regulation of basal and agonist-stimulated G protein coupling by μ opioid receptors (OP3) in morphine pretreated cells. J Neurochem. 2000;75:763–771.

    CAS  PubMed  Google Scholar 

  146. Wang D, Tolbert LM, Carlson KW, Sadee W. Nuclear Ca2+/calmodulin translocation activated by μ opioid (OP3) receptor. J Neurochem. 2000;74:1418–1425.

    CAS  PubMed  Google Scholar 

  147. Coughlin SR. Expanding horizons for receptors coupled to G proteins: diversity and disease. Curr Op Cell Biol. 1994;6:191–197.

    CAS  PubMed  Google Scholar 

  148. Felder CB, Graul RC, Lee AY, Merkle HP, Sadee W. Venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors. AAPS PharmSci. 1999;1(2): article 2 http://www.pharmsci.org/scientificjournals/pharmsci/journal/venus/index.html.

  149. Chen J, Ishii M, Wang L, Ishii K, Coughlin SR. Thrombin receptor activation. Confirmation of the intramolecular tethered liganding hypothesis and discovery of an alternative intermolecular liganding mode. J Biol Chem. 1994;269:16041–16045.

    CAS  PubMed  Google Scholar 

  150. Law PY, Wong YH, Loh HH. Mutational analysis of the structure and function of opioid receptors. Biopolymers. 1999;51:440–455.

    CAS  PubMed  Google Scholar 

  151. Befort K, Tabbara L, Kling D, Maigret B, Kieffer BL. Role of aromatic transmembrane residues of the delta-opioid receptor in ligand recognition. J Biol Chem. 1996;271:10161–10168.

    CAS  PubMed  Google Scholar 

  152. Lefkowitz RJ, Cotecchia S, Samama P, Costa T. Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. TiPS. 1993;14:303–307.

    CAS  PubMed  Google Scholar 

  153. Leff P. The two-state model of receptor activation. TiPS. 1995;16:89–97.

    CAS  PubMed  Google Scholar 

  154. Milligan P, Bond RA. Inverse agonism and the regulation of receptor number. TiPS. 1997;18:468–474.

    CAS  PubMed  Google Scholar 

  155. Chidiac P, Hebert TE, Valiquette M, Dennis M, Bouvier M. Inverse agonist activity of beta-adrenergic antagonists. Mol Pharmacol. 1994;45:490–499.

    CAS  PubMed  Google Scholar 

  156. Barker EL, Westphal RS, Schmidt D, Sanders-Bush E. Constitutively active 5-hydroxytryptamine2C receptors reveal novel inverse agonist activity of receptor ligands. J Biol Chem. 1994;269:11687–11690.

    CAS  PubMed  Google Scholar 

  157. Brys R, Josson K, Castelli MP, et al. Reconstituting the human 5-HT1D receptor-G protein coupling: evidence for constitutive activity and multiple receptor conformations. Mol Pharmacol. 2000;57:1132–1141.

    CAS  PubMed  Google Scholar 

  158. Leeb-Lundberg LM, Mathis SA, Herzig MC. Antagonists of bradykinin that stabilize a G-protein-uncoupled state of the B2 receptor act as inverse agonists in rat myometrial cells. J Biol Chem. 1994;269:25970–25973.

    CAS  PubMed  Google Scholar 

  159. Costa T, Herz A. Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci U S A. 1989;86:7321–7325.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Jakubik J, Bacakova L, el-Fakahany EE, Tucek S. Constitutive activity of the M1–M4 subtypes of muscarinic receptors in transfected CHO cells and of muscarinic receptors in the heart cells revealed by negative antagonists. FEBS Lett. 1995;377:275–279.

    CAS  PubMed  Google Scholar 

  161. Burford NT, Wang D, Sadee W. G protein coupling of μopioid receptors (OP3): elevated basal signaling activity. Biochem J. 2000;348:531–537.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Wang Z, Bilsky EJ, Porreca F, Sadee W. Constitutive μ receptor activation as a regulatory mechanism underlying narcotic tolerance and dependence. Life Sci. 1994;54:PL 339–350.

    Google Scholar 

  163. Högger P, Shockley MS, Lameh J, Sadee W. Activating and inactivating mutations in N- and C-terminal loop junctions of muscarinic acetylcholine Hm1 receptors. J Biol Chem. 1995;270:7405–7410.

    PubMed  Google Scholar 

  164. Rao VR, Oprian DD. Activating mutations of rhodopsin and other G protein-coupled receptors. Ann Rev Biophys Biomol Struct. 1996;25:287–314.

    CAS  Google Scholar 

  165. Claeysen S, Sebben M, Becamel C, et al. Pharmacological properties of 5-hydroxytryptamine(4) receptor antagonists on constitutively active wild-type and mutated receptors. Mol Pharmacol. 2000;58:136–144.

    CAS  PubMed  Google Scholar 

  166. Wang D, Raehal KM, Bilsky EJ, Sadee W. Inverse agonists and neutral antagonists at μ opioid receptor (MOR): possible role of basal receptor signaling in narcotic dependence. J Neurochem. 2001;77:1590–1600.

    CAS  PubMed  Google Scholar 

  167. Allen LF, Lefkowitz RJ, Caron MG, Cotecchia S. G-protein-coupled receptor genes as protooncogenes: constitutively activating mutations of the al B-adrenergic receptor enhances mitogenesis and tumorigenicity. Proc Natl Acad Sci U S A. 1991;88:11354–11358.

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Robb S, Cheek TR, Hannan FL, Hall LM, Midgley JM, Evans PD. Agonist-specific coupling of a cloned Drosophila octopamine/tyramine receptor to multiple second messenger systems. EMBO J. 1994;13:1325–1330.

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Perez DM, Hwa J, Gaivin R, Mathur M, Brown F, Graham RM. Constitutive activation of a single effector pathway: evidence for multiple activation states of a G protein-coupled receptor. Mol Pharmacol. 1996;49:112–122.

    CAS  PubMed  Google Scholar 

  170. Houston DB, Howlett AC. Differential receptor-G protein coupling evoked by dissimilar cannabinoid receptor agonists. Cell Signal. 1998;10:667–674.

    CAS  PubMed  Google Scholar 

  171. Arden JR, Segredo V, Wang Z, Lameh J, Sadee W. Phosphorylation and agonist specific intracellular trafficking of an epitope-tagged μ opioid receptor expressed in HEK293 cells. J Neurochem. 1995;65:1636–1641.

    CAS  PubMed  Google Scholar 

  172. Keith DE, Murray SR, Zaki PA, et al. Morphine activates opioid receptors without causing their rapid internalization. J Biol Chem. 1996;271:19021–19024.

    CAS  PubMed  Google Scholar 

  173. Thomas WG, Alan H, Chang C-S, Karnik S. Agonist induced phosphorylation of the angiotensin II (AT1A) receptor requires generation of a conformation that is distinct from the inositol phosphate signaling state. J Biol Chem. 2000;275:2893–2900.

    CAS  PubMed  Google Scholar 

  174. Standifer KM, Clark JA, Pasternak GW. Modulation of μ1 opioid binding by magnesium: evidence for multiple receptor conformations. J Pharmacol Exp Ther. 1993;266:106–1.

    CAS  PubMed  Google Scholar 

  175. Wreggett KA, Wells JW. Cooperativity in the binding properties of purified cardiac muscarinic receptors. J Biol Chem. 1995;270:22499–22499.

    Google Scholar 

  176. Ostrom RS, Post SR, Insel PA. Stoichiometry and compartmentation in G protein-coupled receptor signaling: implications for therapeutic interventions involving Gs. J Pharmacol Exp Ther. 2000;294:407–4

    CAS  PubMed  Google Scholar 

  177. Rodbell M. The role of GTP-binding proteins in signal transduction: from the sublimely simple to the conceptually complex. Curr Top Cell Regul. 1992;32:1–47.

    CAS  PubMed  Google Scholar 

  178. Jordan BA, Devi LA. G-protein-coupled receptor heterodimerization modulates receptor function. Nature. 1999;399:697–700.

    CAS  PubMed Central  PubMed  Google Scholar 

  179. George SR, Fan T, Xie Z, et al. Oligomerization of μ and d-opioidreceptors. Generation of novel functional properties. J Biol Chem. 2000;275:26128–26135.

    CAS  PubMed  Google Scholar 

  180. Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Pate YC. Recpetors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science. 2000;288:154–157.

    CAS  PubMed  Google Scholar 

  181. Jones KA, Borowsky B, Tamm JA, et al. GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature. 1998;396:674–679.

    CAS  PubMed  Google Scholar 

  182. Liu F, Wan Q, Pristupa ZD, Yu XM, Wang YT, Niznik HB. Direct protein-protein coupling enables cross-talk between dopamine D5 and? acid A receptors. Nature. 2000;403:274–280.

    CAS  PubMed  Google Scholar 

  183. Shenker A. G protein-coupled receptor structure and function: the impact of disease-causing mutations. Baillieres Clin Endocrinol Metab. 1995;9:427–451.

    CAS  PubMed  Google Scholar 

  184. Spiegel AM. Defects in G protein-coupled signal transduction in human disease. Annu Rev Physiol. 1996;58:143–170.

    CAS  PubMed  Google Scholar 

  185. Kamsteeg EJ, Deen PM, van Os CH. Defective processing and trafficking of water channels in nephrogenic diabetes insipidus. Exp Nephrol. 2000;8:326–331.

    CAS  PubMed  Google Scholar 

  186. Kopin AS, McBride EW, Schaffer K, Beinborn M. CCK receptor polymorphisms: an illustration of emerging themes in pharmacogenomics. TiPS. 2002;21:346–353.

    Google Scholar 

  187. Feng Y, Broder CC, Kennedy PA, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996;272:872–877.

    CAS  PubMed  Google Scholar 

  188. Alkhatib G, Combadiere C, Broder CC, et al. CC CKR5: A RANTES, MIP-1aa, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996;272:1955–1958.

    CAS  PubMed  Google Scholar 

  189. Bleul CC, Farzan M, Choe H, et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV entry. Nature. 1996;382:829–833.

    CAS  PubMed  Google Scholar 

  190. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P. Identification of RANTES, MIP-1aa, and MIP-1β as the major HIV-suppressive factors produced by CD8+T cells. Science. 1995;270:1811–1815.

    CAS  PubMed  Google Scholar 

  191. Moore PS, Boshoff C, Weiss RA, Chang Y. Molecular minicry of human cytokine and cytokine response pathway genes by KSWHV. Science. 1996;274:1739–1743.

    CAS  PubMed  Google Scholar 

  192. Quillan JM, Sadee W. Dynorphin peptides: antagonists at melanocortin receptors. Pharm Res. 1997;14:713–719.

    CAS  PubMed  Google Scholar 

  193. Pickar D. Pharmacogenomics of psychiatric disorders. TiPS. 2001;22:75–83.

    CAS  PubMed  Google Scholar 

  194. Lahti RA, Evans DL, Stratman NC, Figur LM. Dopamine D4 versus D2 receptor selectivity of dopamine receptor antagonists: possible therapeutic implications. Eur J Pharmacol. 1993;236:483–486.

    CAS  PubMed  Google Scholar 

  195. Phillips ST, de Paulis T, Baron BM, et al. Binding of 5H-dibenzo[b,e][1.4]diazepine and chiral 5Hdibenzo[a,d]cycloheptene analogues of clozapine to dopamine and serotonin receptors. J Med Chem. 1994;37:2686–2696.

    CAS  PubMed  Google Scholar 

  196. Olianas MC, Maullu C, Onali P. Mixed agonist-antagonist properties of clozapine at different human cloned muscarinic receptor subtypes expressed in Chinese hamster ovary cells. Neuropsychopharmacology. 1999;20:263–270.

    CAS  PubMed  Google Scholar 

  197. Korpi ER, Wong G, Lueddens H. Subtype specificity of gamma-aminobutyric acid type A receptor antagonism by clozapine. NS Arch Pharmacol. 1995;352:365–373.

    CAS  Google Scholar 

  198. Gelernter J, Kranzler H, Cubells J. Genetics of two μopioid receptor gene (OPRM1) exon I polymorphisms: population studies and allele frequencies in alcohol- and drug-dependent subjects. Mol Psychiatr. 1999;4:476–483.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Sadee.

Additional information

Published: July 26, 2001

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadee, W., Hoeg, E., Lucas, J. et al. Genetic variations in human G protein-coupled receptors: Implications for drug therapy. AAPS PharmSci 3, 22 (2001). https://doi.org/10.1208/ps030322

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/ps030322

Keywords

Navigation