Skip to main content
Log in

Pharmacokinetic model of target-mediated disposition of thrombopoietin

  • Published:
AAPS PharmSci Aims and scope Submit manuscript

Abstract

Thrombopoietin, TPO, a 353 amino acid cytokine, is a primary regulator of platelet production that was cloned recently. A target-mediated (platelet receptors) pharmacokinetic model was developed to characterize the disposition of TPO. Receptor-mediated endocytosis was assigned as the major elimination pathway in the model. A nonspecific binding compartment was also incorporated into the model. TPO concentration vs time profiles from a published phase 1 and 2 clinical trial were used to apply this model. Noncompartmental analysis demonstrated that TPO exhibits nonlinear kinetics. The proposed model captured the concentration-time profiles relatively well. The first-order internalization rate constant was estimated as 0.1 h−1. The endogenous binding capacity was estimated as 164.0 pM. The second-order binding association constant (kon) was 0.055 h−1·pM−1 and the first-order dissociation constant (koff) was estimated as 2.5 h−1, rendering the equilibrium dissociation constant Kd as 45.5 pM. This model may be relevant to other therapeutic agents with receptor-mediated endocytotic disposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartley TD, Bogenberger J, Hunt P, Li YS, et al. Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor. Mpl. Cell. 1994;77:1117–1124.

    Article  CAS  PubMed  Google Scholar 

  2. Sauvage FJ, Hass PE, Spencer SD, et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature. 1994;369:533–538.

    Article  PubMed  Google Scholar 

  3. Kuter DJ, Beeler DL, Rosenberg RD. The purification of megapoietin: a physiological regulator of megakaryocyte growth and platelet production. Proc Natl Acad Sci U S A. 1994;91:11104–11108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lok S, Kaushansky K, Holly RD, et al. Cloning and expression of murine TPO cDNA and stimulation of platelet production in vivo. Nature. 1994;369:565–568.

    Article  CAS  PubMed  Google Scholar 

  5. Sohma Y, Akahori H, Seki N, et al. Molecular cloning and chromosomal localization of the human TPO gene. FEBS Lett. 1994;353:57–61.

    Article  CAS  PubMed  Google Scholar 

  6. Vigon I, Mornon JP, Cocault L, et al. Molecular cloning and characterization of MPL, the human homolog of the v-mpl oncogene: identification of a member of the hematopoietic growth factor receptor superfamily. Proc Natl Acad Sci U S A. 1992;89:5640–5644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Debili N, Wendling F, Cosman D, et al. The Mpl receptor is expressed in the megakaryocytic lineage from late progenitors to platelets. Blood. 1995;85:391–401.

    CAS  PubMed  Google Scholar 

  8. Kaushansky K, Broudy VC, Lin N, et al. TPO, the Mp1 ligand, is essential for full megakaryocyte development. Proc Natl Acad Sci U S A. 1995;92:3234–3238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kobayashi M, Laver JH, Kato T, Miyazaki H, Ogawa M. Recombinant human TPO (Mpl ligand) enhances proliferation of erythroid progenitors. Blood. 1995;86:2494–2499.

    CAS  PubMed  Google Scholar 

  10. Simicka E, Lin N, Priestley GV, et al. The effect of TPO on the proliferation and differentiation of murine hematopoietic stem cells. Blood. 1996;87:4998–5005.

    Google Scholar 

  11. Kaushansky K, Lok S, Holly RD, et al. Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand TPO. Nature. 1994;369:568–571.

    Article  CAS  PubMed  Google Scholar 

  12. Hokom MM, Lacey D, Kinstler OB, et al. Pegylated megakaryocyte growth and development factor abrogates the lethal thrombocytopenia associated with carboplatin and irradiation in mice. Blood. 1995;86:4486–4492.

    CAS  PubMed  Google Scholar 

  13. Cardier JE, Dempsey J. TPO and its receptor, c-mpl, are constitutively expressed by mouse liver endothelial cells: evidence of TPO as a growth factor for liver endothelial cells. Blood. 1998;91:923–929.

    CAS  PubMed  Google Scholar 

  14. Sungaran R, Markovic B, Chong BH. Localization and regulation of TPO mRNa expression in human kidney, liver, bone marrow, and spleen using in situ hybridization. Blood. 1997;89:101–107.

    CAS  PubMed  Google Scholar 

  15. Kuter DJ, Rosenberg RD. The reciprocal relationship of TPO (c-Mpl ligand) to changes in the platelet mass during busulfan-induced thrombocytopenia in the rabbit. Blood. 1995;85:2720–2730.

    CAS  PubMed  Google Scholar 

  16. Bondurant MC, Koury MJ. Anemia induces accumulation of erythropoietin mRNA in the kidney and liver. Mol Cell Biol 1986;6:2731–2733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fielder PJ, Gurney AL, Stefanich E, et al. Regulation of TPO levels by c-mpl-mediated binding to platelets. Blood. 1996;87:2154–2161.

    CAS  PubMed  Google Scholar 

  18. Sugiyama Y, Hanano M. Receptor-mediated transport of peptide hormones and its importance in the overall homone disposition in the body. Pharm Res. 1989;6:192–202.

    Article  CAS  PubMed  Google Scholar 

  19. Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28:507–532.

    Article  CAS  PubMed  Google Scholar 

  20. Fielder PJ, Hass P, Nagel M, et al. Human platelets as a model for the binding and degradation of TPO. Blood. 1997;89:2782–2788.

    CAS  PubMed  Google Scholar 

  21. Li J, Xia Y, Kuter DJ. Interaction of TPO with the platelet c-mpl receptor in plasma: binding, internalization, stability and pharmacokinetics. Br J Haematol. 1999;106:345–356.

    Article  CAS  PubMed  Google Scholar 

  22. Broudy VC, Lin NL, Sabath DF, Papayannopoulou T, Kaushansky K. Human platelets display high-affinity receptors for TPO. Blood. 1997;89:1896–1904.

    CAS  PubMed  Google Scholar 

  23. Vadhan-Raj S, Murray LJ, Bueso-Ramos C, et al. Stimulation of megakaryocyte and platelet production by a single dose of recombinant human TPO in patients with cancer. Ann Intern Med. 1997;126:673–681.

    Article  CAS  PubMed  Google Scholar 

  24. D Argenio DZ, Schumitzky A. ADAPT II Users Guide. Los Angeles, CA: Biomedical Simulations Resource; 1997.

    Google Scholar 

  25. Levy G. Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther. 1994;56:248–252.

    Article  CAS  PubMed  Google Scholar 

  26. Kuter DJ. TPOs and thrombopoiesis: a clinical perspective. Vox Sang. 1998;74:75–85.

    Article  CAS  PubMed  Google Scholar 

  27. Braeckman R. Pharmacokinetics and pharmacodynamics of protein therapeutics. In: Reid RE, ed. Peptide and Protein Drug Analysis. New York, NY: Marcel Dekker, 2000:633–669.

    Google Scholar 

  28. Dayneka NL, Garg V, Jusko WJ. Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm. 1993;21:457–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krzyzanski W, Ramakrishnan R, Jusko WJ. Basic pharmacodynamic models for agents that alter production of natural cells. J Pharmacokinet Biopharm. 1999;27:467–489.

    Article  CAS  PubMed  Google Scholar 

  30. Ruka W, Rutkowski P, Kaminska J, Rysinska A, and Steffen J. Alterations of routine blood tests in adult patients with soft tissue sarcomas: relationship to cytokine serum levels and prognostic significance. Ann Oncol. 2001;12:1423–1432.

    Article  CAS  PubMed  Google Scholar 

  31. Emmons RV, Reid DM, Cohen RL, et al. Human TPO levels are high when thrombocytopenia is due to megakaryocyte deficiency and low when due to increased platelet destruction. Blood. 1996;87:4068–4071.

    CAS  PubMed  Google Scholar 

  32. Rowland M, Tozer TN, Rowland R. Clinical Pharmacokinetics: Concepts and Applications. Philadelphia, PA: Lippincott, Williams & Wilkins; 1995.

    Google Scholar 

  33. Cheng HY, Jusko WJ. Mean residence time concepts for pharmacokinetic systems with nonlinear drug elimination described by the Michaelis-Menten equation. Pharm Res. 1988;5:156–164.

    Article  CAS  PubMed  Google Scholar 

  34. Jusko WJ. Pharmacokinetics of capacity-limited systems. J Clin Pharmacol. 1989;29:488–493.

    Article  CAS  PubMed  Google Scholar 

  35. Lin JH. Dose-dependent pharmacokinetics: experimental observations and theoretical considerations. Biopharm Drug Dispos. 1994;15:1–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Krzyzanski.

Additional information

Published: March 9, 2004

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, F., Krzyzanski, W. Pharmacokinetic model of target-mediated disposition of thrombopoietin. AAPS J 6, 9 (2004). https://doi.org/10.1208/ps060109

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/ps060109

Keywords

Navigation