Skip to main content
Log in

In Vitro Considerations to Support Bioequivalence of Locally Acting Drugs in Dry Powder Inhalers for Lung Diseases

  • Regulatory Note
  • Published:
The AAPS Journal Aims and scope Submit manuscript

An Erratum to this article was published on 10 November 2010

Abstract

Dry powder inhalers (DPIs) are used to deliver locally acting drugs (e.g., bronchodilators and corticosteroids) for treatment of lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). Demonstrating bioequivalence (BE) for DPI products is challenging, primarily due to an incomplete understanding of the relevance of drug concentrations in blood or plasma to equivalence in drug delivery to the local site(s) of action. Thus, BE of these drug/device combination products is established based on an aggregate weight of evidence, which utilizes in vitro studies to demonstrate equivalence of in vitro performance, pharmacokinetic or pharmacodynamic studies to demonstrate equivalence of systemic exposure, and pharmacodynamic and clinical endpoint studies to demonstrate equivalence in local action. This review discusses key aspects of in vitro studies in supporting the establishment of BE for generic locally acting DPI products. These aspects include comparability in device resistance and equivalence in in vitro testing for single inhalation (actuation) content and aerodynamic particle size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. [21 CFR 320.1(e)].

  2. Pharmaceutical equivalents means drug products in identical dosage forms that contain identical amounts of the identical active drug ingredient, i.e., the same salt or ester of the same therapeutic moiety, or, in the case of modified release dosage forms that require a reservoir or overage or such forms as prefilled syringes where residual volume may vary, that deliver identical amounts of the active drug ingredient over the identical dosing period; do not necessarily contain the same inactive ingredients; and meet the identical compendial or other applicable standard of identity, strength, quality, and purity, including potency and, where applicable, content uniformity, disintegration times, and/or dissolution rates [21 CFR 320.1(c)].

  3. Pharmaceutical alternatives means drug products that contain the identical therapeutic moiety, or its precursor, but not necessarily in the same amount or dosage form or as the same salt or ester. Each such drug product individually meets either the identical or its own respective compendial or other applicable standard of identity, strength, quality, and purity, including potency and, where applicable, content uniformity, disintegration times and or dissolution rates [21 CFR 320.1(d)].

References

  1. Weibel ER. Morphometry of the human lung. Berlin: Springer; 1963.

    Google Scholar 

  2. Hickey AJ, Thompson DC. Physiology of the airways. In: Hickey AJ, editor. Pharmaceutical inhalation aerosol technology. 2nd ed. New York: Marcel Dekker; 2004. p. 1–29.

    Google Scholar 

  3. Carstairs JR, Nimmo AJ, Barnes PJ. Autoradiographic visualization of beta-adrenoceptor subtypes in human lung. Am Rev Respir Dis. 1985;132:541–7.

    PubMed  CAS  Google Scholar 

  4. Usmani OS, Biddiscombe MF, Barnes PJ. Regional lung deposition and bronchodilator response as a function of β2-agonist particle size. Am J Respir Crit Care Med. 2005;172:1497–504.

    Article  PubMed  Google Scholar 

  5. Mak JC, Barnes PJ. Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung. Am Rev Respir Dis. 1990;141:1559–68.

    PubMed  CAS  Google Scholar 

  6. Kraft M, Djukanovic R, Wilson S, Holgate ST, Martin RJ. Alveolar tissue inflammation in asthma. Am J Respir Crit Care Med. 1996;154:1505–10.

    PubMed  CAS  Google Scholar 

  7. Carroll N, Cooke C, James A. The distribution of eosinophils and lymphocytes in the large and small airways of asthmatics. Eur Respir J. 1997;10:292–300.

    Article  PubMed  CAS  Google Scholar 

  8. Sbirlea-Apiou G, Katz I, Caillibotte G, Martonen T, Yang Y. Deposition mechanics of pharmaceutical particles in human airways. In: Hickey AJ, editor. Inhalation aerosols: physical and biological basis for therapy. 2nd ed. New York: Informia Healthcare; 2007. p. 1–30.

    Google Scholar 

  9. Zanen P, Go LT, Lammers JW. Optimal particle size for beta 2 agonist and anticholinergic aerosols in patients with severe airflow obstruction. Thorax. 1996;51:977–80.

    Article  PubMed  CAS  Google Scholar 

  10. Sangwan S, Agosti JM, Bauer LA, Otulana BA, Morishige RJ, Cipolla DC, et al. Aerosolized protein delivery in asthma: gamma camera analysis of regional deposition and perfusion. J Aerosol Med. 2001;14:185–95.

    Article  PubMed  CAS  Google Scholar 

  11. Newman SP, Hirst PH, Pitcairn GR, Clark AR. Understanding regional lung deposition data in gamma scintigraphy. In: Dalby RN, Byron PR, Farr SJ, editors. Respiratory drug delivery VI. Buffalo Grove: Interpharm; 1998. p. 9–16.

    Google Scholar 

  12. Esposito-Festen JE, Zanen P, Tiddens HA, Lammers JW. Pharmacokinetics of inhaled monodisperse beclomethasone as a function of particle size. Br J Clin Pharmacol. 2007;64:328–34.

    Article  PubMed  CAS  Google Scholar 

  13. Whale CI. Safety aspects of β2-agonists in chronic obstructive pulmonary disease. A thesis submitted to the University of Nottingham for the degree of Doctor of Medicine, November 2007. http://etheses.nottingham.ac.uk/647/1/CHRIS_WHALE_DM_THESIS.pdf. Accessed 30 Mar 2009.

  14. Zanen P, Go LT, Lammers J-W. The optimal particle size for β-adrenergic aerosols in mild asthmatics. Int J Pharm. 1994;107:211–7.

    Article  CAS  Google Scholar 

  15. Zanen P, Go LT, Lammers J-WJ. The optimal particle size for parasympathicolytic aerosols in mild asthmatics. Int J Pharm. 1995;114:111–5.

    Article  CAS  Google Scholar 

  16. Usmani OS, Biddiscombe MF, Nightingale JA, Underwood SR, Barnes PJ. Effects of bronchodilator particle size in asthmatic patients using monodisperse aerosols. J Appl Physiol. 2003;95:2106–12.

    PubMed  Google Scholar 

  17. Weda M. The clinical impact of changing the fine particle mass data obtained with albuterol DPIs. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, Young PM, editors. Respiratory drug delivery 2008: Book I. River Grove, IL: Davis Healthcare International; 2008. p. 85–92.

    Google Scholar 

  18. Fults KA, Miller IF, Hickey AJ. Effect of particle morphology on emitted dose of fatty acid-treated disodium cromoglycate powder aerosols. Pharm Dev Technol. 1997;2:67–79.

    Article  PubMed  CAS  Google Scholar 

  19. Dunbar CA, Hickey AJ, Holzner P. Dispersion and characterization of pharmaceutical dry powder aerosols. Kona. 1998;16:7–45.

    CAS  Google Scholar 

  20. Gonda I. Targeting by deposition. In: Hickey AJ, editor. Pharmaceutical inhalation aerosol technology. 2nd ed. New York: Marcel Dekker; 2004. p. 65–88.

    Google Scholar 

  21. Telko MJ, Hickey AJ. Dry powder inhaler formulation. Respir Care. 2005;50:1209–27.

    PubMed  Google Scholar 

  22. Ganderton D, Kassem NM. Dry powder inhalers. Adv Pharm Sci. 1992;6:165–91.

    CAS  Google Scholar 

  23. Schreier H, Mobley WC, Concessio N, Hickey AJ, Niven RW. Formulation and in vitro performance of liposome powder aerosols. STP Pharma Sci. 1994;4:38–44.

    CAS  Google Scholar 

  24. Staniforth JN, Rees JE, Lai FK, Hersey JA. Interparticle forces in binary and ternary ordered powder mixes. J Pharm Pharmacol. 1982;34:141–5.

    PubMed  CAS  Google Scholar 

  25. Islam N, Stewart P, Larson I, Hartley P. Effect of carrier size on the dispersion of salmeterol xinafoate from interactive mixtures. J Pharm Sci. 2004;93:1030–8.

    Article  PubMed  CAS  Google Scholar 

  26. Louey MD, Stewart PJ. Particle interactions involved in aerosol dispersion of ternary interactive mixtures. Pharm Res. 2002;19:1524–31.

    Article  PubMed  CAS  Google Scholar 

  27. de Boer AH, Gjaltema D, Hagedoorn P. Inhalation characteristics and their effects on in vitro drug delivery from dry powder inhalers Part 2: effect of peak flow rate (PIFR) and inspiration time on the in vitro drug release from three different types of commercial dry powder inhalers. Int J Pharm. 1996;138:45–56.

    Article  Google Scholar 

  28. Carter PA, Rowley G, Fletcher EJ, Stylianopoulos V. Measurement of electrostatic charge decay in pharmaceutical powders and polymer materials used in dry powder inhaler devices. Drug Dev Ind Pharm. 1998;24:1083–8.

    Article  PubMed  CAS  Google Scholar 

  29. Dalby RN, Tiano SL, Hickey AJ. Medical devices for the delivery of therapeutic aerosols to the lungs. In: Hickey AJ, editor. Inhalation aerosols: physical and biological basis for therapy. 2nd ed. New York: Informa Healthcare; 2007. p. 417–44.

    Google Scholar 

  30. Chrystyn H. The DiskusTM: a review of its position among dry powder inhaler devices. Int J Clin Pract. 2007;61:1022–36.

    Article  PubMed  CAS  Google Scholar 

  31. Molimard M, Raherison C, Lignot S, Depont F, Abouelfath A, Moore N. Assessment of handling of inhaler devices in real life: an observational study in 3811 patients in primary care. J Aerosol Med. 2003;16:249–54.

    Article  PubMed  CAS  Google Scholar 

  32. Hindle M, Byron PR. Dose emissions from marketed dry powder inhalers. Int J Pharm. 1995;116:169–77.

    Article  CAS  Google Scholar 

  33. Mitchell JP, Nagel MW. Cascade impactors for the size characterization of aerosols from medical inhalers: their uses and limitations. J Aerosol Med. 2003;16:341–77.

    Article  PubMed  CAS  Google Scholar 

  34. Meakin BJ, Cainey JM, Woodcock PM. Drug delivery characteristics of Bricanyl Turbohaler™ dry powder inhalers. Int J Pharm. 1995;119:91–102.

    Article  CAS  Google Scholar 

  35. Newman SP, Chan H-K. In vitro/in vivo comparisons in pulmonary drug delivery. J Aerosol Med Pul Drug Delivery. 2008;21:77–84.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sau Lawrence Lee.

Additional information

The opinions expressed in this review by the authors do not necessarily reflect the views or policies of the Food and Drug Administration (FDA).

An erratum to this article is available at http://dx.doi.org/10.1208/s12248-010-9243-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.L., Adams, W.P., Li, B.V. et al. In Vitro Considerations to Support Bioequivalence of Locally Acting Drugs in Dry Powder Inhalers for Lung Diseases. AAPS J 11, 414–423 (2009). https://doi.org/10.1208/s12248-009-9121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-009-9121-4

Key words

Navigation