Determinants of targeting by endogenous and exogenous microRNAs and siRNAs

  1. Cydney B. Nielsen1,3,
  2. Noam Shomron1,3,
  3. Rickard Sandberg1,
  4. Eran Hornstein2,4,
  5. Jacob Kitzman1,5, and
  6. Christopher B Burge1
  1. 1Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
  2. 2Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
  1. 3 These authors contributed equally to this work.

Abstract

Vertebrate mRNAs are frequently targeted for post-transcriptional repression by microRNAs (miRNAs) through mechanisms involving pairing of 3′ UTR seed matches to bases at the 5′ end of miRNAs. Through analysis of expression array data following miRNA or siRNA overexpression or inhibition, we found that mRNA fold change increases multiplicatively (i.e., log-additively) with seed match count and that a single 8 mer seed match mediates down-regulation comparable to two 7 mer seed matches. We identified several targeting determinants that enhance seed match-associated mRNA repression, including the presence of adenosine opposite miRNA base 1 and of adenosine or uridine opposite miRNA base 9, independent of complementarity to the siRNA/miRNA. Increased sequence conservation in the ∼50 bases 5′ and 3′ of the seed match and increased AU content 3′ of the seed match were each independently associated with increased mRNA down-regulation. All of these determinants are enriched in the vicinity of conserved miRNA seed matches, supporting their activity in endogenous miRNA targeting. Together, our results enable improved siRNA off-target prediction, allow integrated ranking of conserved and nonconserved miRNA targets, and show that targeting by endogenous and exogenous miRNAs/siRNAs involves similar or identical determinants.

Keywords

Footnotes

  • 4 Present addresses: Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel;

  • 5 NimbleGen Systems Inc., Madison, Wisconsin 53711, USA.

  • Reprint requests to: Christopher B. Burge, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; e-mail: cburge{at}mit.edu; fax: (617) 452-2936.

  • Article published online ahead of print. Article and publication date are at http://www.rnajournal.org/cgi/doi/10.1261/rna.768207.

    • Received July 26, 2007.
    • Accepted August 8, 2007.
| Table of Contents