Skip to main content
Log in

Phenotypic characterization of human umbilical vein endothelial (ECV304) and urinary carcinoma (T24) cells: Endothelial versus epithelial features

  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

ECV 304 cells reported as originating from human umbilical vein endothelial cells by spontaneous transformation have been used as a model cell line for endothelia over the last decade. Recently, deoxyribonucleic acid fingerprinting revealed an identical genotype for ECV 304 and T24 cells (urinary bladder carcinoma cell line). In order to resolve the apparent discrepancy between the identical genotype and the fact that ECV304 cells phenotypically show important endothelial characteristics, a comparative study was performed. Immortalized porcine brain microvascular endothelial cells/C1–2, and Madin Darby canine kidney cells were included as typical endothelial and epithelial cells, respectively. Various methods, such as confocal laser scanning microscopy, Western blot, and protein activity tests, were used to study the cell lines. ECV304 and T24 cells differ in criteria, such as growth behavior, cytoarchitecture, tight junction arrangement, transmembrane electrical resistance, and activity of γ-glutamyltransferase. Several endothelial markers (von Willebrand factor, uptake of low-density lipoprotein, vimentin) could clearly be identified in ECV304, but not in T24 cells. Desmoglein and cytokeratin, both known as epithelial markers, were found in ECV304 as well as T24 cells. However, differences were found for the two cell lines with respect to the type of cytokeratin: in ECV304 cells mainly cytokeratin 18 (45 kDa) is found, whereas in T24 cells cytokeratin 8 (52 kDa) is predominant. As we could demonstrate, the ECV 304 cell line exposes many endothelial features which, in view of the scarcity of suitable endothelial cell lines, still make it an attractive in vitro model for endothelia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbot, S.E.; Kaul, A.; Stevens, C.R.; Blake, D.R. Isolation and culture of synovial microvascular endothelial cells. Characterization and assessment of adhesion molecule expression. Arthritis Rheum. 35:401–406; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Abedi, H.; Zachary, I. Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J. Biol. Chem. 272:15,442–15,451; 1997.

    Article  CAS  Google Scholar 

  • Alexander, J.S.; Patton, W.F.; Yoon, M.U.; Shepro, D. Cytokeratin filament modulation in pulmonary microvessel endothelial cells by vasoactive agents and culture confluency. Tissue Cell 23: 141–150; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, P.D.; Du Bois, M.; Shivers, R.R.; Dorovini-Zis, K. Endothelial tight junction. In: Cereijido, M., ed. Tight junctions, Boca Raton, FL. CRC Press; 1992: 305–320.

    Google Scholar 

  • Bubenik, J.; Baresova, M.; Viklicky, V.; Jakoubkova, J.; Sainerova, H.; Donner, J. Established cell line of urinary bladder carcinoma (T24) containing tumour-specific antigen. Int. J. Cancer 11:765–773: 1973.

    Article  PubMed  CAS  Google Scholar 

  • Chung-Welch, N.; Patton, W.F.; Shepro, D.; Cambria, R.P. Two-stage isolation procedure for obtaining homogenous populations of microvascular endothelial and mesothelial cells from human omentum. Microvasc. Res. 54:121–134; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Commandeur, J.N.M.; Stijntjes, G.J.; Vermeulen, N.P.E. Enzymes and transport systems involved in the formation and disposition of glutathione S-conjugates: role in bioactivation and detoxication mechanisms of xenobiotics. Pharmacol. Rev. 47:271–330; 1995.

    PubMed  CAS  Google Scholar 

  • Connell, N.D.; Rheinwald, J.G. Regulation of the cytoskeleton in mesothelial cells: reversible loss of keratin and increase in vimentin during rapid growth in culture. Cell 34:245–253; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Czernobilsky, B.; Moll, R.; Levy, R.; Franke, W.W. Co-expression of cytokeratin and vimentin filaments in mesothelial, granulosa and rete ovarii cells of the human ovary. Eur. J. Cell Biol. 37:175–190; 1985.

    PubMed  CAS  Google Scholar 

  • De Boer, A.G.; Gaillard, P.J.; Breimer, D.D. The transference of results between blood-brain barrier cell culture systems. Eur. J. Pharm. Sci. 8:1–4; 1999.

    Article  PubMed  Google Scholar 

  • Dejana, E.; Corada, M.; Lampugnani, M.G.; Endothelial cell-to-cell junctions. FASEB J 9:910–918; 1995.

    PubMed  CAS  Google Scholar 

  • Dirks, W.G.; Macleod, R.A.F.; Drexler, H.G. ECV304 (endothelial) is really T24 (bladder carcinoma): cell line cross-contamination at source. In Vitro Cell. Dev. Biol. 35A:558–559; 1999.

    Google Scholar 

  • Dobbie, M.S.; Hurt, R.D.; Klein, N.J.; Surtees, R.A.H. Upregulation of intercellular adhesion molecule-1 expression on human endothelial cells by tumour necrosis factor-α in an in vitro model of the blood-brain barrier. Brain Res. 830:330–336; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Dunina-Barkovskaya, A, Tight junctions: facts and models. Membr. Cell Biol. 11:555–589; 1998.

    PubMed  CAS  Google Scholar 

  • Flatow, U.; Rabson, A.B.; Rabson, A.S. Tumorigenicity of T24 urinary bladder carcinoma cellssublines. Int. J. Cancer 40:240–245; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J. The role of angiogenesis in tumor growth. Semin. Cancer Biol. 3:65–71; 1992.

    PubMed  CAS  Google Scholar 

  • Frey, A. Gamma-glutamyl transpeptidase: molecular cloning and structural and functional features of a blood-brain barreir marker protein. In: Pardrige, W.M., ed. The blood-brain barrier: cellular and molecular biology. New York: Raven Press; 1993:339–368.

    Google Scholar 

  • Glukhova, M.A.; Shekhonin, B.V.; Kruth, H.; Koteliansky, V.E. Expression of cytokeratin 8 in human aortic smooth muscle cells. Am. J. Physiol. 261:72–77; 1991.

    PubMed  CAS  Google Scholar 

  • Hämmerle, S.P.; Rothen-Rutishauser, B.; Krämer, S.D.; Günthert, M.; Wunderli-Allenspach, H. P-gp in cell cultures: a combined approach to study expression, localisation, and functionality in the confocal microscope. Eur. J. Pharm. Sci. 12:69–77; 2000.

    Article  PubMed  Google Scholar 

  • Hewett, P.W.; Murray, J.C. Human microvessel endothelial cells: isolation, culture and characterization. In Vitro Cell. Dev. Biol. 29A:823–830; 1993.

    CAS  Google Scholar 

  • Holthofer, H.; Miettinen, A.; Lehto, V.P.; Lehtonen, E.; Virtanen, I. Expression of vimentin and cytokeratin types of intermediate filament proteins in developing and adult human kidneys. Lab. Invest. 50:552–559; 1984.

    PubMed  CAS  Google Scholar 

  • Hosoya, K.I.; Kim, K.J.; Lee, V.H. Age-dependent expression of P-glycoprotein gp170 in Caco-2 cell monolayers. Pharm. Res. 13:885–890; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Hrycyna, C.A.; Airan, L.E.; Germann, U.A.; Ambudkar, S.V.; Pastan, I.; Gottesman, M.M. Structural flexibility of the linker region of human P-glycoprotein permits ATP hydrolysis and drug transport. Biochemistry 37:13,660–13,673; 1998.

    Article  CAS  Google Scholar 

  • Hughes, S.E. Functional characterization of the spontaneously transformed human umbilical vein endothelial cell line ECV304: use in an in vitro model of angiogenesis. Exp. Cell Res. 225:171–185; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Hurst, R.D.; Fritz, I.B. Properties of an immortalised vascular endothelial/glioma cell co-culture model of the blood-brain barrier. J. Cell. Physiol. 167:81–88; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Imao, T.; Koshida, K.; Endo, Y.; Uchibayashi, T.; Sasaki, T.; Namiki, M. Dominant role of E-cadherin in the progression of bladder cancer. J. Urol. 161:692–698; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kiessling, F.; Kartenbeck, J.; Haller, C. Cell-cell contacts in the human cell line ECV304 exhibit both endothelial and epithelial characteristics. Cell Tissue Res. 297: 131–140; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kikkawa, Y.; Akaogi, K.; Mizushima, H.; Yamanaka, N.; Umeda, M.; Miyazaki, K. Stimulation of endothelial cell migration in culture by ladsin, a laminin-5-like cell adhesion protein. In Vitro Cell. Dev. Biol. 32A:46–52; 1996.

    Google Scholar 

  • Kim, C.S.; Wang, T.; Madri, J.A. Platelet endothelial cell adhesion moleculel expression modulates endothelial cell migration in vitro. Lab. Invest. 78:583–590; 1998.

    PubMed  CAS  Google Scholar 

  • Lechardeur, D.; Schwartz, B.; Paulin, D.; Scherman, D. Induction of bloodbrain barrier differentiation in a rat brain-derived endothelial cell line. Exp. Cell Res. 220:161–170; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Massy, Z.A.; Keane, W.F. Pathogenesis of atherosclerosis. Semin. Nephrol. 16:12–20; 1996.

    PubMed  CAS  Google Scholar 

  • McRoberts, J.A.; Taub, M.; Saier, M.H. The Madin Darby canine kidney (MDCK) cell link. In: Sato G.H., ed. Functionally differentiated cell lines New York: Alan R. Liss; 1981: 117–139

    Google Scholar 

  • Naftalin, L.; Sexton, M.; Whitaker, J.F.; Tracey, A. A routine procedure for estimating serum γ-glutamyltranspeptidase activity. Clin. Chim. Acta 26:293–296: 1969.

    Article  PubMed  CAS  Google Scholar 

  • Pal, D.; Audus, K.L.; Siahaan, T.J. Modulation of cellular adhesion in bovine brain microvessel endothelial cells by a decapeptide. Brain Res. 747:103–113; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Relling, M.V. Are the major effects of P-glycoprotein modulators due to altered pharmacokinetics of anticancer drugs. Ther. Drug Moit. 18:350–356; 1996.

    Article  CAS  Google Scholar 

  • Richardson, J.C.W.; Scalera, V.; Simmons, N.L. Identification of two strains of MDCK cells which resemble separate nephron tubule segments. Biochim. Biophys. Acta 673:26–36; 1981.

    PubMed  CAS  Google Scholar 

  • Rothen-Rutishauser, B.M.; Krämer, S.D.; Braun, A.; Günthert, M.; Wunderli-Allenspach, H. MDCK cell cultures as an epithelial in vitro model: cytoskeleton and tight junctions as indicators for the definition of age-related stages by confocal microscopy. Pharm. Res. 15:964–971; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, L.L.; Hall, D.E.; Porter, S.; Barbu, K.; Cannon, C.; Horner, H.C.; Janatpour, M.; Liaw, C.W.; Manning, K.; Morales, J. A cell culture model of the blood-brain barrier. J. Cell Biol. 115:1725–1735; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Schmid, E.; Schiller, D.L.; Grund, C.; Stadler, J.; Franke, W.W. Tissue typespecific expression of intermediate filament proteins in a cultured epithelial cell line from bovine mammary gland. J. Cell Biol. 96:37–50; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Scism, J.L.; Laska, D.A.; Horn, J.W.; Gimple, J.L.; Pratt, S.E.; Shepard, R.L.; Dantzig, A.H.; Wrighton, S.A. Evaluation of an in vitro coculture model for the blood-brain barrier: comparison of human umbilical vein endothelial cells (ECV304) and rat glioma cells (C6) from two commercial sources. In Vitro Cell. Dev. Biol. 35A:580–592; 1999.

    Google Scholar 

  • Scott, P.A.; Bicknell, R The isolation and culture of microvascular endothelium J. Cell Sci. 105:269–273; 1993.

    PubMed  Google Scholar 

  • Stosiek, P.; Kasper, M.; Conrad, K. Immunhistochemische Untersuchungen zur Cytokeratin-Expression in menschlichen Gefässendothelien unter besonderer Berücksichtigung des Gelenkbindegewebes. Acta Histochem. 89:61–66; 1990.

    PubMed  CAS  Google Scholar 

  • Stuart, R.O.; Sun, A.; Panichas, M.; Hebert, S.C.; Brenner, B.M.; Nigam, S.K.; Critical role for intracellular calcium in tight junction biogenesis. J. Cell. Physiol. 159:423–433; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K.; Sawasaki, Y. Human endothelial cell line, ECV304, produces pro-urokinase [letter]. In Vitro Cell Dev. Biol. 27A; 766–768; 1991.

    PubMed  CAS  Google Scholar 

  • Takahashi, K.; Sawasaki, Y.; Hata, J.; Mukai, K.; Goto, T. Spontaneous transformation and immortalization of human endothelial cells. In Vitro Cell. Dev. Biol. 26:265–274; 1990.

    PubMed  CAS  Google Scholar 

  • Tang, C.G.; Chen, Y.Q.; Newman, P.J.; Shi, L.; Gao, X.; Diglio, C.A.; Honn, K.V. Identification of PECAM-1 in solid tumor cells and its potential involvement in tumor cell adhesion to endothelium. J. Biol. Chem. 268:22,883–22,894; 1993.

    CAS  Google Scholar 

  • Teifel, M.; Friedl, P. Establishment of the permanent microvascular endothelial cell line PBMEC/C1–2 from porcine brains. Exp. Cell Res. 228:50–57; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Thiebaut, F.; Tsuro, T.; Hamada, H.; Gottesman, M.M.; Pastan, I.; Willingham, M.C. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA 84:7735–7738; 1987

    Article  PubMed  CAS  Google Scholar 

  • Traweek, S.T.; Liu, J.; Battifora, H. Keratin gene expression in non-epithelial tissues. Detection with polymerase chain reaction. Am. J. Pathol. 142: 1111–1118; 1993.

    PubMed  CAS  Google Scholar 

  • Vanderlaan, M.; Phares, W. α-Glutamyltranspeptidase: a tumour cell marker with a pharmacological function. Histochem. J. 13:865–877; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Verkoelen, C.F.; Romijn, J.C.; De Bruijn W.C.; Boeve E.R.; Cao, L.C.; Schroder, F.H. Association of calcium oxalate monohydrate crystals with MDCK cells. Kidney Int. 48:129–138; 1995.

    PubMed  CAS  Google Scholar 

  • Vinals, F.; Gross, A.; Testar, X.; Palacin, M.; Rosen, P.; Zorzano, A. High glucose concentrations inhibit glucose phosphorylation, but not glucose transport, in human endothelial cells. Biochim. Biophys. Acta 1450:119–129; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Voyta, J.C.; Via, D.P.; Butterfield, C.E.; Zetter, B.R. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell Biol. 99:2034–2040; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, D.D.; Olmsted, J.B.; Marder, V.J. Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells J. Cell Biol. 95:355–360; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Wakatsuki, S.; Watanabe, R.; Saito, K.; Saito, T.; Katagiri, A.; Sato, S.; Tomita, Y Loss of human E-cadherin (ECD) correlated with invasiveness of transitional cell cancer in the renal pelvis, ureter and urinary bladder. Cancer Lett. 103:11–17; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Wong, V. Phosphorylation of occludin correlated with occludin localization and function at the tight junction. Am. J. Physiol. 273:C1859-C1867; 1997.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Wunderli-Allenspach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suda, K., Rothen-Rutishauser, B., Günthert, M. et al. Phenotypic characterization of human umbilical vein endothelial (ECV304) and urinary carcinoma (T24) cells: Endothelial versus epithelial features. In Vitro Cell.Dev.Biol.-Animal 37, 505–514 (2001). https://doi.org/10.1290/1071-2690(2001)037<0505:PCOHUV>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2001)037<0505:PCOHUV>2.0.CO;2

Key words

Navigation