Skip to main content
Log in

Homocystein oxidation and apoptosis: A potential cause of cleft palate

  • Articles
  • Toxicology/Chemical Carcinogenesis
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Cleft palate is the most common craniofacial anomaly. Affected individuals require extensive medical and psychosocial support. Although cleft plate has a complex and poorly understood etiology, low maternal folate is known to be a risk factor for craniofacial anomalies. Folate deficiency results in elevated homocysteine levels, which may disturb palatogenesis by several mechanism, including oxidative stress and perturbation of matrix metabolism. We examined the effect of homocysteine-induced oxidative stress on human embryonic palatal mesenchyme (HEPM) cells and demonstrated that biologically relevant levels of homocysteine (20–100 μM) with copper (10 μM) resulted in dose-dependant apoptosis, which was prevented by addition of catalase but not superoxide dismutase. Incubation of murine palates in organ culture with homocysteine (100 μM) and CuSO4 (10 μM) resulted in a decrease in palate fusion, which was not significant. Gelatin gel zymograms of HEPM cell-conditioned media and extracts of cultured murine palates, however, showed no change in the expression or activation of pro-matrix metalloproteinase-2 with homocysteine (20 μM-1 mM) with or without CuSO4 (10 μM). We have demonstrated that biologically relevant levels of homocysteine in combination with copper can results in apoptosis as a result of oxidative stress; therefore, homocysteine has the potential to disrupt normal palate development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Obdaidi, N.; Kastner, U.; Merker, H.-J.; Klug, S. Development of a suspension organ culture of the foetal rat palate. Arch. Toxicol. 69:472–479; 1995.

    Article  Google Scholar 

  • Antunes, F.; Cadenas, E.; Brunk, U. T. Apoptosis induced by exposure to a low steady state concentration of hydrogen peroxide is a consequence of lysosomal rupture. Biochem. J. 356:549–555; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Austin, R. C.; Sood, S. K.; Dorward, A. M.; Singh, G.; Shaughnessy, S. G.; Pamidi, S.; Outinen, P. A.; Weitz, J. I.. Homocysteine-dependent alterations in mitochondrial gene expression, function and structure. J. Biol. Chem. 273:30808–30817; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Bescond, A.; Augier, T.; Chareyre, C.; Garcon, D.; Hornebeck, W.; Charpiot, P. Influence of homocysteine on matrix metalloproteinase-2: activation and activity. Biochem. Biophys. Res. Commun. 263:498–503; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Bessede, G.; Miguet, C.; Gambert, P.; Neel, D.; Lizard, G.. Efficiency of homocysteine plus copper in inducing apoptosis is inversely proportional to ψ-glutamyl transpeptidase activity. FASEB J. 15:1927–1940; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Blavier, L.; Lazaryev, A.; Groffenm, J.; Heisterkamp, N.; DeClerck, Y. A.; Kaartinen, V. TGF-beta3-induced palatogenesis requires matrix metalloproteinases. Mol. Biol. Cell 12:1457–1466; 2001.

    PubMed  CAS  Google Scholar 

  • Brenneisen, P.; Briviba, K.; Wlaschek, M.; Wenk, J.; Scharffetter-Kochanek, K. Hydrogen peroxide (H2O2) increases the steady-state mRNA levels of collagenase/MMP-1 in human dermal fibroblasts. Free Radic. Biol. Med. 22:515–524; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Brinkley, L. L. In vitro studies of palatal shelf elevation. In: Pratt, R. M.; Christiansen, R. L. ed. Current research trends in craniofacial development. Elsevier/North-Holland, New York. 1980:203–220.

    Google Scholar 

  • Brown, N. L.; Yarram, S. J.; Mansell J. P.; Sandy, J. R.; Matrix metalloproteinases have a role in palatogenesis. J. Dent. Res. 81:826–830; 2002.

    PubMed  CAS  Google Scholar 

  • Burgoon, J. M.; Selhub, J.; Nadeau, M.; Sadler, T. W. Investigation of the effects of folate deficiency on embryonic development through the establishment of a folate deficient mouse model. Teratology 65:219–227; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Cartwright, G. E.; Wintrobe, M. M. Levels of copper in serum of normal men and women. Am. J. Clin. Nutr. 14:224–231; 1964.

    PubMed  CAS  Google Scholar 

  • Chen, S. Y.; Sulik, K. K. Free radicals and ethanol-induced cytotoxicity in neural crest cells. Alcohol Clin Exp. Res. 20:1071–1076; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, B.; Rosenblatt, D. S. Effects of folates deficiency on embryonic development. Baillieres Clin. Haematol. 8:617–637; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Cuervo, R.; Valencia, C.; Chandraratna, R. A. S.; Covarrubias, L. Programmed cell death is required for palate shelf fusion and is regulated by retinoic acid. Dev. Biol. 245:145–156; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Davies, K. J. The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48:41–47; 1999.

    PubMed  CAS  Google Scholar 

  • Davis, W. L.; Crawford, L. A.; Cooper, O. J.; Farmer, G. R.; Thomas, D. L.; Freeman, B. L. Ethanol induces the generation of reactive free radicals by neural crest cells. J. Craniofac. Genet. Dev. Biol. 10:277–293; 1990.

    PubMed  CAS  Google Scholar 

  • Dudman, N. P.; Wilcken, D. E. L. Increased plasma copper in patients with homocystinuria due to cystathione β-synthase deficiency. Clin. Chim. Acta 127:105–113; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, M. W. K. Palate development. Development 103;41–60; 1988.

    PubMed  Google Scholar 

  • Finkesltein, J. D.; Martin, J. J. Homocysteine. Int. J. Biochem. Cell Biol. 32:385–389; 2000.

    Article  Google Scholar 

  • Finnell, R. H.; Greer, K. A.; Barber, R. C.; Piedrahita, J. A. Neural tube and craniofacial defects with special emphasis on folate pathway genes. Crit. Rev. Oral Biol. Med. 9:38–53; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Hampton, M. B.; Fadeel, B.; Orrenius, S. Redox regulation of the caspases during apoptosis. Ann. NY Acad. Sci. 854:328–335; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Hartridge, T.; Illing, H. M.; Sandy, J. R. The role of folic acid in oral clefting. Br. J. Orthod. 26:115–120; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Hultberg, B.; Andersson, A.; Isaksson, A. The cell damaging effects of low amounts of homocysteine and copper ions in human cell line cultures are caused by oxidative stress. Toxicology 123:33–40; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, S. H. The reaction of homocysteine with aldehyde: an explanation of the collagen defects in homocystinuria. Clin. Chim. Acta 45:215–217; 1973.

    Article  PubMed  CAS  Google Scholar 

  • Kehrer, J. P. Cause-effect of oxidative stress and apoptosis. Teratology 62:235–236; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–682; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Limpach, A.; Dalton, M.; Miles, R.; Gadson, P. Homocysteine inhibits retinoic acid synthesis: a mechanism for homocysteine-induced congenital defects. Exp. Cell Res. 260:166–174; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Majors, A.; Ehrhart, L. A.; Pezacka, E. H. Homocysteine as a risk factor for vascular disease. Enhanced collagen production and accumulation by smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 17:2074–2081; 1997.

    PubMed  CAS  Google Scholar 

  • Mansell, J. P.; Bailey, A. J. Abnormal cancellous bone collagen metabolism in osteoarthritis. J. Clin. Invest. 101:1596–1603; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Mansell, J. P. Kerrigan, J.; McGill, J.; Bailey, A. J.; TeKoppele, J.; Sandy, J. R. Temporal changes in collage composition and metabolism during rodent palatogenesis. Mech. Ageing Dev. 119:49–62; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Mills, J. L.; Kirke, P. N.; Molloy, A. M., et al. Methylenetetrahydrofolate reductase thermolabile variant and oral clefts. Am. J. Med. Genet. 86:71–74; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Morris-Wiman, J.; Du, Y.; Brinkley, L. Occurrence and temporal variation in matrix metalloproteinases and their inhibitors during murine secondary palatal morphogenesis. J. Craniofac. Genet. Dev. Biol. 19:201–212; 1999.

    PubMed  CAS  Google Scholar 

  • Mujumdar, V. S.; Aru, G. M.; Tyagi, S. C Induction of oxidative stress by homocysts(e)ine impairs endothelial function. J. Cell Biochem. 82:491–500; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Nishio, E.; Watanabe, Y. Homocysteine as a modulator of platelet-derived growth factor action in vascular smooth muscle cells: a possible role for hydrogen peroxide. Br. J. Pharmacol. 122:269–274; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Outinen, P. A.; Sood, S. K.; Liaw, P. C. Y., et al. Characterisation of the stress-inducing effects of homocysteine. Biochem. J. 332: 213–221; 1998.

    PubMed  CAS  Google Scholar 

  • Outinen, P. A.; Sood, S. K.; Pfeifer, S. I.; Pamidi, S.; Podor, T. J.; Li, J.; Weitz, J. I.; Austin, R. C. Homocysteine-induced endoplasmic reticulum stress and growth arrest leads to specific changes in gene expression in human vascular endothelial cells. Blood 94:959–967; 1999.

    PubMed  CAS  Google Scholar 

  • Rajagopalan, S.; Ping Meng, X.; Ramasamy, S.; Harrison, D. G.; Galis, Z. S. Reactive oxygen spices produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. J. Clin. Invest. 98:2572–2579; 1996.

    PubMed  CAS  Google Scholar 

  • Refsum, H.; Ueland, P.; Nygard, O.; Vollset, S. Homocysteine and cardiovascular disease. Ann. Rev. Med. 49:31–62; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Rosenquist, T. H.; Finnell, R. H. Genes, folate and homocysteine in embryonic development. Proc. Nutr. Soc. 60:53–61; 2001.

    PubMed  CAS  Google Scholar 

  • Rosenquist, T. H.; Ratashak, S. A.; Selhub, J. Homocysteine induces congenital defects of the heart and neural tube: effect of folic acid. Proc. Natl. Acad. Sci. USA 93:15227–15232; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Sergi, C.; Serpi, M.; Muller-Navia, J.; Schnabel, P. A.; Hagl S.; Otto, H. F.; Ulmer, H. E. Catch 22 syndrome. Report of 7 infants with follow-up data and review of the recent advancements in the genetic knowledge of the locus 22q11. Pathologica 91:166–172; 1999.

    PubMed  CAS  Google Scholar 

  • Simon, H.-U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Sivan, E.; Lee, Y.; Wu, Y.; Reece, E. A. Free radical scavenging enzymes in fetal dysmorphogenesis among offspring of diabetic rats. Teratology 56:343–349; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Siwik, D. A.; Pagano, P. J.; Colucci, W. S. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am. J. Physiol. Cell Physiol. 280:C53-C60; 2001.

    PubMed  CAS  Google Scholar 

  • Starkebaum, G.; Harlan, J. M. Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine. J. Clin. Invest. 77:1370–1376; 1986.

    PubMed  CAS  Google Scholar 

  • Steegers-Theunissen, R. P.; Boers, G. H.; Blom, H. J.; Nijhuis, J. G.; Thomas, C. M.; Borm, G. F.; Eskes, T. K. Neural tube defects and elevated homocysteine levels in amniotic fluid. Am. J. Obstet. Gynecol. 172:1436–1441; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Steegers-Theunissen, R. P.; Boers, G. H.; Trijbels, F. J., et al. Maternal hyperhomocysteinemia: a risk factor for neural tube defects? Metabolism 43:1475–1480; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, Y. J.; Lorenzi, M. V.; Shi, S. S.; Day, R. M. Blumberg, J. B. Homocysteine exerts cell type-specific inhibition of AP-1 transcription factor. Free Radic. Biol. Med. 28:39–45; 2000.

    Article  PubMed  Google Scholar 

  • Torres, L.; Garcia-Trevjiano, E. R.; Rodriguez, J. A. et al. Induction of TIMP-1 expression in rat hepatic stellate cells and hepatocytes: a new role for homocysteine in liver fibrosis. Biochim. Biophys. Acta 1455:12–22; 1999.

    PubMed  CAS  Google Scholar 

  • Upchurch, G. R.; Welch, G.; Fabian, A. J.; Freedman, J. L.; Johnson, J. L.; Keaney, J. F.; Loscalzo, J. Homocys(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J. Biol. Chem. 272:17012–17017; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J.; Trudinger, B. J.; Duarte, N.; Wilcken, D. E.; Wang, X. L. Elevated circulating homocyste(e)ine levels in placental vascular disease and associated pre-eclampsia. Br. J. Obstet. Gynecol. 107:935–938; 2000.

    CAS  Google Scholar 

  • Wong, W. Y.; Eskes, T. K.; Kuijpers-Jagtman, A. M.; Spauwen, P. H.; Steegers, E. A.; Thomas, C. M.; Hamel, B. C.; Blom, H. J.; Steegers-Theunissen, R. P. Nonsyndromic oralfacial clefts: association with maternal hyperhomocysteinemia. Teratology 60:253–257; 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynda Knott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knott, L., Hartridge, T., Brown, N.L. et al. Homocystein oxidation and apoptosis: A potential cause of cleft palate. In Vitro Cell.Dev.Biol.-Animal 39, 98–105 (2003). https://doi.org/10.1290/1543-706X(2003)039<0098:HOAAAP>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1543-706X(2003)039<0098:HOAAAP>2.0.CO;2

Key words

Navigation