header advert
You currently have no access to view or download this content. Please log in with your institutional or personal account if you should have access to through either of these
The Bone & Joint Journal Logo

Receive monthly Table of Contents alerts from The Bone & Joint Journal

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Get Access locked padlock

Research

Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-β1



Download PDF

Abstract

Extracorporeal shock-wave (ESW) treatment hasbeen shown to be effective in promoting the healing of fractures. We aimed to determine whether ESW could enhance the growth of bone-marrow osteoprogenitor cells. We applied ESW to the left femur of rats 10 mm above the knee at 0.16 mJ/mm2 in a range of between 250 and 2000 impulses. Bone-marrow cells were harvested after ESW for one day and subjected to assessment of colony-forming unit (CFU) granulocytes, monocytes, erythocytes, megakaryocytes (CFU-Mix), CFU-stromal cells (CFU-S) and CFU-osteoprogenitors (CFU-O).

We found that the mean value for the CFU-O colonies after treatment with 500 impulses of ESW was 168.2 CFU-O/well (sem 11.3) compared with 88.2 CFU-O/well (sem 7.2) in the control group. By contrast, ESW treatment did not affect haematopoiesis as shown by the CFU-Mix (p = 0.557). Treatment with 250 and 500 impulses promoted CFU-O, but not CFU-Mix formations whereas treatment with more than 750 impulses had an inhibiting effect. Treatment with 500 impulses also enhanced the activity of bone alkaline phosphatase in the subculture of CFU-O (p< 0.01), indicating a selective promotion of growth of osteoprogenitor cells. Similarly, formation of bone nodules in the long-term culture of bone-marrow osteoprogenitor cells was also significantly enhanced by ESW treatment with 500 impulses. The mean production of TGF-β1 was 610 pg/ml (sem 84.6) in culture supernatants from ESW-treated rats compared with 283 pg/ml (sem 36.8) in the control group.

Our findings suggest that optimal treatment with ESW could enhance rat bone-marrow stromal growth and differentiation towards osteoprogenitors presumably by induction of TGF-β1.


Correspondence should be sent to Dr C. J Wang at 123 Ta-Pei Road, Niao-Sung, Kaohsiung 833, Taiwan.

For access options please click here