Skip to main content
Log in

Ethanol production from dilute-acid softwood hydrolysate by co-culture

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Dilute-acid softwood hydrolysate, with glucose and xylose as the dominant sugars was fermented to ethanol by co-cultures. The strains used include Saccharomyces cerevisiae 2.535 (1#), Pachysolen tannophilis ATCC 2.1662 (2#), and recombinant Escherichia coli (3#) constructed in our laboratory carrying both pdc and adhB genes derived from Zymomonas mobilis. Before fermentation, the co-cultures were adapted for five batches. Observation under light microscope showed aggregation of adapted strains, which could possibly improve their ability to degrade inhibitors. In addition, we tried to detoxify the dilute-acid softwood hydrolysate with a combined method before fermentation. Our study showed that fermentation of detoxified hydrolysate by adapted co-culture (1# + 2@) generated an exceptionally high ethanol yield on total sugar of 0.49 g/g, corresponding to 96.1% of the maximal theoretical value after 48h; fermentation of detoxified hydrolysate by adapted co-culture (1# + 3#) is faster (24h) and could reach a high ethanol yield (0.45 g/g total sugar). These experiments suggest that both adaptation and detoxification significantly improve hydrolysate fermentation and ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agblevor, F. A., Fu, J., Hames, B., and McMillan, J. D. (2004) Appl. Biochem. Biotechnol. 199(2) 97–120.

    Article  Google Scholar 

  2. Palmqvist, E. and Hahn-Hagerdal, B. (2000) Biores. Technol. 74, 17–24.

    Article  CAS  Google Scholar 

  3. Zaldivar, J., Martinez, A., and Ingram, L. O. (1999) Biotechnol. Bioeng. 65, 24–32.

    Article  CAS  Google Scholar 

  4. Mussatto, S. I. and Roberto, I. C. (2004) Biores. Technol. 93, 1–10.

    Article  CAS  Google Scholar 

  5. Jönsson, L. J., Palmqvist, E., and Nilvebrant, N. O. (1998) Appl. Microbiol. Biotechnol. 49, 691–697.

    Article  Google Scholar 

  6. Nilvebrant, N. O., Reimann, A., and Larsson, S. (2001) Appl. Biochem. Biotechnol. 91–93, 35–49.

    Article  Google Scholar 

  7. Nigam, J. N. (2002) J. Biotechnol. 97, 107–116.

    Article  CAS  Google Scholar 

  8. Miyafuji, H., Danner, H., and Neureiter, M. (2003) Biotechnol. Bioeng 84, 390–393.

    Article  CAS  Google Scholar 

  9. Amartey, S. and Jeffries, T. (1996) World J. Microbiol. Biotechnol. 12, 281–283.

    Article  CAS  Google Scholar 

  10. Taherzaden, M. J., Millati, R., and Niklasson, C. (2001) Appl. Biochem. Biotechnol. 95, 45–57.

    Article  Google Scholar 

  11. Yamano, L. P., York, S. W., and Ingram, L O. (1998) J. Ind. Microbiol. Biotechnol. 20, 132–138.

    Article  Google Scholar 

  12. Lawford, H. G., Rousseau, J. D., and Mohagheghi, A. (1999) Appl. Biochem. Biotechnol. 77, 191–204.

    Article  Google Scholar 

  13. Rudolf, A., Galbe, M., and Lidén, G. (2004) Appl. Biochem. Biotechnol. 114, 1–3, 601–618.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiushan Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, M., Tian, S., Li, X. et al. Ethanol production from dilute-acid softwood hydrolysate by co-culture. Appl Biochem Biotechnol 134, 273–283 (2006). https://doi.org/10.1385/ABAB:134:3:273

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:134:3:273

Index Entries

Navigation