Skip to main content
Log in

Steady-state measurements of lactic acid production in a wild-type and a putative d-lactic acid dehydrogenase-negative mutant of zymomonas mobilis

Influence of glycolytic flux

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This work represents a continuation of our investigation into environmental conditions that promote lactic acid synthesis by Zymomonas mobilis. The characteristic near theoretical yield of ethanol from glucose by Z. mobilis can be compromised by the synthesis of d- and l-lactic acid. The production of lactic acid is exacerbated by the following conditions: pH 6.0, yeast extract, and reduced growth rate. At a specific growth rate of 0.048/h, the average yield of dl-lactate from glucose in a yeast extract-based medium at pH 6.0 was 0.15 g/g. This represents a reduction in ethanol yield of about 10% relative to the yield at a growth rate of 0.15/h. Very little lactic acid was produced at pH 5.0 or using a defined salts medium (without yeast extract) Under permissive and comparable culture conditions, a tetracycline-resistant, d-ldh negative mutant produced about 50% less lactic acid than its parent strain Zm ATCC 39676. d-lactic acid was detected in the cell-free spent fermentation medium of the mutant, but this could be owing to the presence of a racemase enzyme. Under the steady-state growth conditions provided by the chemostat, the specific rate of glucose consumption was altered at a constant growth rate of 0.075/h. Shifting from glucose-limited to nitrogen-limited growth, or increasing the temperature, caused an increase in the specific rate of glucose catabolism. There was good correlation between an increase in glycolytic flux and a decrease in lactic acid yield from glucose. This study points to a mechanistic link between the glycolytic flux and the control of end-product glucose metabolism. Implications of reduced glycolytic flux in pentose-fermenting recombinant Z. mobilis strains, relative to increased byproduct synthesis, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rogers, P. L., Lee, K. J., Skotnicki, M. L., and Tribe, D. E. (1982), Adv. Biochem. Eng. 23, 37–84.

    Google Scholar 

  2. Doelle, H. W., Kirk, L., Crittenden, R., Toh, H., and Doelle, M. (1993), Crit. Rev. Biotechnol. 13, 57–98.

    CAS  Google Scholar 

  3. Lawford, H. G. (1988), VIII International Symposium on Alcohol Fuels, New Energy and Industrial Technology Development Organization, Sanbi Insatsu, Japan, pp. 21–27.

    Google Scholar 

  4. Lawford, H. G. (1988), in Canadian Power Alcohol Conference, Candlish, B., ed., Biomass Energy Institute, Winnipeg, Manitoba, Canada, pp. 245–251.

    Google Scholar 

  5. Lynd, L. R., Elander, R. T., and Wyman, C. E. (1996), Appl. Biochem. Biotechnol. 57/58, 741–761.

    CAS  Google Scholar 

  6. Hinman, N. D., Schell, D. J., Riley, C. J., Bergeron, P. W., and Walter, P. F. (1992), Appl. Biochem. Biotechnol. 34/35, 639–650.

    Google Scholar 

  7. Godia, F., Sasas, C., and Sola, C. (1987), Process Biochem. 22, 43–50.

    CAS  Google Scholar 

  8. Doelle, H. W. (1989), US patent no. 4,797,360.

  9. Rogers, P. L. and Tribe, D. E. (1984), US patent no. 4,443,544.

  10. Lawford, H. G. (1989), US patent no. 4,840,902.

  11. Lawford, H. G. and Rousseau, J. D. (2001), Appl. Biochem. Biotechnol. 91–93, 117–131.

    Article  Google Scholar 

  12. Lawford, H. G. and Rousseau, J. D. (2002), Appl. Biochem. Biotechnol. 98–100, 429–448.

    Article  Google Scholar 

  13. Zhang, M., Chou, Y-C., Picataggio, S. K., and Finkelstein, M. (1998), US patent no. 5,843,760.

  14. De Graaf, A. A., Striegel, K., Wittig, R. M., Laufer, B., Schmitz, G., Wirchert, W., Sprenger, G.A., and Sahm, H. (1999), Arch. Microbiol. 171, 371–385

    Article  Google Scholar 

  15. Kim, I. S., Barrow, K. D., and Rogers, P. L. (2000), Appl. Biochem. Biotechnol. 84–86, 357–370.

    Article  Google Scholar 

  16. Swings, J. and DeLey, J. (1977), Bacteriol. Rev. 41, 1–46.

    CAS  Google Scholar 

  17. Kluyver, A. J. and Hoppenbrouwers, W. J. (1931), Arch. Microbiol. 2, 245–260.

    Google Scholar 

  18. Beläich, J. P. and Senez, J. C. (1965), J. Bacteriol. 89, 1195–1200.

    Google Scholar 

  19. Dawes, E. A., Ribbons, D. W., and Large, P. J. (1966), Biochem. J. 98, 795–803.

    CAS  Google Scholar 

  20. Gibbs, M. and DeMoss, R. D. (1954), J. Biol. Chem. 207, 689–694.

    CAS  Google Scholar 

  21. Johns, M. R., Greenfield, P. F., and Doelle, H. W. (1991), Adv Biochem Eng Biotechnol. 44, 97–121.

    CAS  Google Scholar 

  22. Lawford, H. G. and Rousseau, J. D. (1988), Appl.Biochem. Biotechnol. 70–72, 173–185.

    Google Scholar 

  23. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. K. (1995), Science 267, 240–243.

    Article  CAS  Google Scholar 

  24. Joachimsthal, E., Haggett, K. D., and Rogers, P.L. (1999), Appl. Biochem. Biotechnol. 77–79, 147–157.

    Article  Google Scholar 

  25. Lawford, H. G. and Rousseau, J. D. (2000), Appl. Biochem. Biotechnol. 84-86, 277–2931.

    Article  CAS  Google Scholar 

  26. Lawford, H. G., Rousseau, J. D., Mohagheghi, A. and McMillan, J. D. (1998), Appl. Biochem. Biotechnol. 70–79, 353–368.

    Google Scholar 

  27. Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1999), Appl. Biochem. Biotechnol. 77–79, 191–204.

    Article  Google Scholar 

  28. Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (2000), Appl. Biochem. Biotechnol. 84–86, 295–310.

    Article  Google Scholar 

  29. Zhang, M., Chou, Y. C., Lai, X. K., Milstrey, S., Danielson, N., Evans, K., Mohagheghi, A. and Finkelstein, M. (1999), Abstract no. 2–16, 21st Symposium on Biotechnology for Fuels and Chemicals, Fort Collins, CO.

  30. Yomano, L. P., Scopes, R. K., and Ingram, L. O. (1993), J. Bacteriol. 175, 3926–3933.

    CAS  Google Scholar 

  31. Park, S. C., Kademi, A., and Baratti, J. C. (1993), Biotechnol. Letts. 15, 1179–1184.

    Article  CAS  Google Scholar 

  32. Lawford, H. G. and Rousseau, J. D. (1995), Appl. Biochem. Biotechnol. 51/52, 179–195.

    CAS  Google Scholar 

  33. Schmidt, W. and Schügerl, K. (1987), Chem. Eng. J. 36, B39-B48.

    Article  CAS  Google Scholar 

  34. Viikari, L. (1988), Crit. Rev. Biotechnol. 7, 237–261.

    CAS  Google Scholar 

  35. Garvie, E. I. (1980), Microbiol. Rev. 44, 106–139.

    CAS  Google Scholar 

  36. Pirt, S. J. (1975), Principles of Microbe and Cell Cultivation, Blackwell Scientific, London, UK, pp. 66–68.

    Google Scholar 

  37. Lawford, H. G. (1988), Appl. Biochem. Biotechnol. 17, 203–219.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh G. Lawford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawford, H.G., Rousseau, J.D. Steady-state measurements of lactic acid production in a wild-type and a putative d-lactic acid dehydrogenase-negative mutant of zymomonas mobilis . Appl Biochem Biotechnol 98, 215–228 (2002). https://doi.org/10.1385/ABAB:98-100:1-9:215

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:98-100:1-9:215

Index Entries

Navigation