Skip to main content
Log in

Airborne manganese exposure differentially affects end points of oxidative stress in an age-and sex-dependent manner

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Juvenile female and male (young) and 16-mo-old male (old) rats inhaled manganese in the form of manganese sulfate (MnSO4) at 0, 0.01, 0.1, and 0.5 mg Mn/m3 or manganese phosphate at 0.1 mg Mn/m3 in exposures of 6h/d, 5d/wk for 13 wk. We assessed biochemical end points indicative of oxidative stress in five brain regions: cerebellum, hippocampus, hypothalamus, olfactory bulb, and striatum. Glutamine synthetase (GS) protein levels, metallothionein (MT) and GS mRNA levels, and total glutathione (GSH) levels were determined for all five regions. Although most brain regions in the three groups of animals were unaffected by manganese exposure in terms of GS protein levels, there was significantly increased protein (p<0.05) in the hippocampus and decreased protein in the hypothalamus of young male rats exposed to manganese phosphate as well as in the aged rats exposed to 0.1 mg/m3 MnSO4. Conversely, GS protein was elevated in the olfactory bulb of females exposed to the high dose of MnSO4. Statistically significant decreases (p<0.05) in MT and GS mRNA as a result, of manganese exposure were observed in the cerebellum, olfactory bulb, and hippocampus in the young male rats, in the hypothalamus in the young female rats, and in the hippocampus in the senescent males. Total GSH levels significantly (p<0.05) decreased in the olfactory bulb of manganese exposed young male rats and increased in the olfactory bulb of female rats exposed to manganese. Both the aged and young female rats had significantly decreased (p<0.05) GSH in the striatum resulting from manganese inhalation. The old male rats also had depleted GSH levels in the cerebellum and hypothalamus as a result, of the 0.1-mg/m3 manganese phosphate exposure. These results demonstrate that age and sex are variables that must be considered whenassessing the neurotoxicity of manganese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. S. Hurley and C. L. Keen, Manganese, in Trace Elements in Human Health and Animal Nutrition, E. Underwood and W. Mertz, eds., Academic, New York, pp. 185–223 (1987).

    Google Scholar 

  2. M. Aschner, K. M. Erikson, and D. C. Dorman, Manganese dosimetry: species differences and implications for neurotoxicity, Crit. Rev. Toxicol., in press.

  3. ATSDR (Agency for Toxic Substances and Disease Registry), Toxicological profile for manganese, U.S. Department of Health And Human Services Public Health Service (available at http://www.atsdr.cdc.gov/toxprofiles/tp151.html), September 2000.

  4. D. Mergler, G. Huel, R. Bowler, et al., Nervous system dysfunction among workers with long-term exposure to manganese. Environ. Res. 64, 151–180 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. P. K. Pal, A. Samii, and D. B. Calne, Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology 20, 227–238 (1999).

    PubMed  CAS  Google Scholar 

  6. E. D. Pellizzari, C. A. Clayton, C. E. Rodes, et al., Particulate matter and manganese exposures in Indianapolis, Indiana. J. Expo. Anal. Environ. Epidemiol. 11, 423–440 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. M. Aschner, Manganese neurotoxicity and oxidative damage, in Metals and Oxidative Damage in Neurological Disorders, J. R. Connor, ed. Plenum, New York, pp. 77–93 (1997).

    Google Scholar 

  8. W. N. Sloot, J. Korf, J. F. Koster, et al., Manganese-induced hydroxyl radical formation in rat striatum is not attenuated by dopamine depletion or iron chelation in vivo. Exp. Neurol. 138, 236–245 (1996).

    Article  PubMed  CAS  Google Scholar 

  9. P. Galvani, P. Fumagalli, and A. Santagostino, Vulnerability of mitochondrial complex I in PC12 cells exposed to manganese. Eur. J. Pharmacol. 293, 377–383 (1995).

    Article  PubMed  CAS  Google Scholar 

  10. C. E. Gavin, K. K. Gunter, and T. E. Gunter, Manganese and calcium transport in mitochondria: implications for manganese toxicity. Neurotoxicology 20, 445–453 (1999).

    PubMed  CAS  Google Scholar 

  11. F. S. Archibald and C. Tyree, Manganese poisoning and the attack of trivalent manganese upon catecholamines. Arch. Biochem. Biophys. 256, 638–650 (1987).

    Article  PubMed  CAS  Google Scholar 

  12. S. F. Ali, H. M. Duhart, G. D. Newport, G. W. Lipe, et al., Manganese-induced reactive oxygen species: comparison between Mn+2 and Mn+3. Neurodegeneration 4, 329–334 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. J. Y. Chen, G. C. Tsao, Q. Zhao, et al., Differential cytotoxicity of Mn(II) and Mn(III): special reference to mitochondrial [Fe−S] containing enzymes. Toxicol. Appl. Pharmacol. 175, 160–168 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. K. K. Gunter, L. M. Miller, M. Aschner, et al., XANES spectroscopy: a promising tool for toxicology: a tutorial, Neurotoxicology 23, 127–146 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. D. HaMai A. Campbell, and S. C. Bondy, Modulation of oxidative events by multivalent manganese complexes in brain tissue. Free Radical Biol. Med. 31, 763–768 (2001).

    Article  CAS  Google Scholar 

  16. V. Anantharam, M. Kitazawa, J. Wagner, et al., Caspase-3-dependent proteolytic cleavage of protein kinase C delta is essential for oxidative stress-mediated dopaminergic cell death after exposure to methylcyclopentadienyl manganese tricarbonyl. J. Neurosci. 22, 1738–1751 (2002).

    PubMed  CAS  Google Scholar 

  17. D. R. Lynam, J. W. Roos, G. D. Pfeifer, et al., Environmental effects and exposures to manganese from use of methylcyclopentadienyl manganese tricarbonyl (MMT) in gasoline. Neurotoxicology 20, 145–150 (1999).

    PubMed  CAS  Google Scholar 

  18. J. Zayed, B. Hong, and G. L'Esperance, Characterization of manganese-containing particles collected form the exhaust emissions of automobiles running with MMT additive, Environ. Sci. Technol. 33, 3341–3346 (1999).

    Article  CAS  Google Scholar 

  19. A. W. Dobson, S. Weber, D. C. Dorman, et al., Inhaled manganese sulfate and measures of oxidative stress in rat brain, Biol. Trace Elemement Res. 93, 113–126 (2003).

    Article  CAS  Google Scholar 

  20. Weber, D. C. Dorman, L. H. Lash, et al., Effects of manganese (Mn) on the developing rat brain: oxidative-stress related endpoints. Neurotoxicology 23, 169–175 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. M. S. Desole, G. Esposito, R. Mighelli, et al., Cellular defence mechanisms in the striatum of young and aged rats subchronically exposed to manganese, Neuropharmacology 34, 289–295 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. D. C. Dorman, B. E. McManus, M. W. Marshall, et al., Old age and gender influence pharmacokinetics of inhaled manganese sulfate and manganese phosphate in rats, Toxicol. Appl. Pharmacol. 197, 113–124 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. V. Barbu and F. Dautry, Northern blot normalization with a 28S rRNA oligonucleotide probe. Nucleic Acids Res. 17, 7115 (1989).

    Article  PubMed  CAS  Google Scholar 

  24. M. W. Fariss and D. J. Reed, High-performance liquid chromatography of thiols and disulfides: dinitrophenol derivatives. Methods Enzymol. 143, 101–109 (1987).

    Article  PubMed  CAS  Google Scholar 

  25. L. H. Lash and J. J. Tokarz, Oxidative stress in isolated rat renal proximal and distal tubular cells. Am. J. Physiol. 259, F338-F347 (1990).

    PubMed  CAS  Google Scholar 

  26. L. H. Lash and E. B. Woods, Cytotoxicity of alkylating agents in isolated rat kidney proximal and distal tubular cells, Arch. Biochem. Biophys. 286, 46–56 (1991).

    Article  PubMed  CAS  Google Scholar 

  27. J. M. Davis, Inhalation health risks of manganese: an EPA perspective, Neurotoxicology 20, 511–518 (1999).

    PubMed  CAS  Google Scholar 

  28. A. Martinez-Hernandez, K. P. Bell, and M. D. Norenberg, Glutamine synthetase: glial localization in the brain. Science 195, 1356–1358 (1977).

    Article  PubMed  CAS  Google Scholar 

  29. U. Sonnewald, N. Westergaard, and A. Schousboe, Glutamate transport and metabolism in astrocytes, Glia 21, 56–63 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. E. R. Stadtman, Protein oxidation and aging, Science 257, 1220–1224 (1992).

    Article  PubMed  CAS  Google Scholar 

  31. M. Aschner, The functional significance of brain metallothioneins, FASEB J. 10, 1129–1136 (1996).

    PubMed  CAS  Google Scholar 

  32. P. Hainut and J. Milner, Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res. 53, 4469–4473 (1993).

    Google Scholar 

  33. S. Hussain, W. Slikker, Jr., and S. F. Ali, Role of metallothionein and other antioxidants in scavenging superoxide radicals and their possible role in neuroprotection, Neurochem. Int. 29, 145–152 (1996).

    Article  PubMed  CAS  Google Scholar 

  34. M. Kondoh, Y. Inoue, S. Atagi, et al., Specific induction of metallothionein synthesis by mitochondrial oxidative stress. Life Sci. 69, 2137–2146 (2001).

    Article  PubMed  CAS  Google Scholar 

  35. A. Meister and M. E. Anderson, Glutathione, Annu. Rev. Biochem. 52, 711–760 (1983).

    Article  PubMed  CAS  Google Scholar 

  36. Y. Chu, K. Kompoliti, E. J. Cochran, et al., Age-related decreases in Nurr-1 immunoreactivity in the human substantia nigra. J. Comp. Neurol. 450, 203–214 (2002).

    Article  PubMed  CAS  Google Scholar 

  37. S. B. Pajovic, Z. S. Saicic, M. B. Spasic, et al., Effects of progesterone and estradiol benzoate on glutathione dependent antioxidant enzyme activities in the brain of female rats, Gen. Physiol. Biophys. 18, 35–44 (1999).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erikson, K.M., Dorman, D.C., Lash, L.H. et al. Airborne manganese exposure differentially affects end points of oxidative stress in an age-and sex-dependent manner. Biol Trace Elem Res 100, 49–62 (2004). https://doi.org/10.1385/BTER:100:1:049

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:100:1:049

Index Entries

Navigation