Skip to main content
Log in

Effects of trace elements on the telomere lengths of hepatocytes L-02 and hepatoma cells SMMC-7721

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effects of selenium, zinc, iron, chromium, and lead on telomere lengths of human cells have not been investigated. This article adopted flow cytometry and fluorescence in situ hybridization to investigate the impact of different elements on cellular apoptosis and telomere lengths of human hepatocytes L-02 and hepatoma cells SMMC-7721. Results showed that these trace elements under the following dosages did not have remarkable effect on cellular apoptosis. However, sodium selenite at doses of 0.5 and 2.5 μmol/L significantly extended the telomere length of hepatocytes L-02; 0.5 μmol/L lead acetate remarkably shortened the telomere length of L-02 cells; 80 μmol/L zinc sulfate, 20 μmol/L ferric chloride, and 200 μmol/L chromic chloride only had slight impact on the telomere length, respectively. Regarding hepatoma cells SMMC-7721, sodium seleite at 0.5 and 2.5 μmol/L had little impact on the telomere length; 80 μmol/L zinc sulfate significantly accelerated the loss of telomere length, whereas 20 μmol/L ferric chloride, 200 μmol/L chromic chloride, and 0.5 μmol/L lead acetate remarkably extended the telomere lengths, respectively. The results revealed differential effects of each trace element on the life-span of human hepatocytes and hepatoma cell lines, which suggested further research on somatic hepatocytes and hepatoma in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Wang, H. B. Xu, R. H. Tang, et al., Trace Elements in Life Science, Chinese Computation Press, Beijing (1992).

    Google Scholar 

  2. I. E. Dreosti, Zinc and the gene, Mutat. Res. 475, 161–167 (2001).

    PubMed  CAS  Google Scholar 

  3. D. L. Hatfield, Selenium, Its Molecular Biology and Role in Human Health, Kluwer Academic, Boston (2001).

    Google Scholar 

  4. V. Abalea, J. Cillard, M. P. Dubos, et al., Iron-induced oxidative DNA damage and its repair in primary rat hepatocyte culture, Carcinogenesis 19, 1053–1059 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. J. Singh and E. T. Snow, Chromium(III) decreases the fidelity of human DNA polymerase beta, Biochemistry (Wash.) 37, 9371–9378 (1998).

    CAS  Google Scholar 

  6. J. Blasiak and J. Kowalik, A comparison of the in vitro genotoxicity of tri- and hexavalent chromium, Mutat. Res. Genet. Toxicol. Environ. Mutag. 1, 135–145 (2000).

    Article  Google Scholar 

  7. K. Steenland and P. Boffetta, Lead and cancer in humans: Where are we now?, Am. J. Ind. Med. 38, 295–299 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. R. K. Boyzis, J. M. Buckingham, L. S. Cram, et al., A highly conserved repetitive DNA sequence (TTAGGG)n present at the telomeres of human chromosomes, Proc. Natl. Acad. Sci. USA 85, 6622–6626 (1988).

    Article  Google Scholar 

  9. J. P. Hanish, J. L. Yanowitz, and T. De Lange, Stringent sequence requirements for the formation of human telomeres, Proc. Natl. Acad. Sci. USA 91, 8861–8865 (1994).

    Article  PubMed  CAS  Google Scholar 

  10. E. H. Blackburn, Structure and function of telomeres, Nature 350, 569–578 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. P. A. Kruk, N. J. Rampino, and V. A. Bohr, DNA damage and repair in telomeres: relation to aging, Proc. Natl. Acad. Sci. USA 92, 256–262 (1995).

    Article  Google Scholar 

  12. C. B. Harley, A. B. Futcher, and C. W. Greider, Telomeres shorten during aging of human fibroblasts, Nature 345, 458–460 (1990).

    Article  PubMed  CAS  Google Scholar 

  13. E. Raymond, D. Sun, S. F. Chen, et al., Agents that target telomerase and telomeres, Curr. Opin. Biotechnol. 7, 583–591 (1996).

    Article  PubMed  CAS  Google Scholar 

  14. J. W. Shay, H. Werbin, and W. E. Wright, Telomeres and telomerase in human leukemias, Leukemia 10, 1255–1261 (1996).

    PubMed  CAS  Google Scholar 

  15. C. M. Counter, A. A. Avilion, C. E. LeFeuere, et al., Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity, EMBO J. 11, 1921–1929 (1992).

    PubMed  CAS  Google Scholar 

  16. T. von Zglinicki, Oxidative stress shortens telomeres, Trends Biochem. Sci. 27, 339–344 (2002).

    Article  Google Scholar 

  17. T. von Zglinicki, Role of oxidative stress in telomere length regulation and replicative senescence, Ann. NY Acad. Sci. 908, 99–110 (2000).

    Article  Google Scholar 

  18. F. M. Batliwalla, R. N. Damle, C. Metz, et al., Simultaneous flow cytometric analysis of cell surface markers and telomere length: analysis of human tonsilar B cells, J. Immunol. Methods 247, 103–109 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. N. Rufer, W. Dragowska, G. Thornbury, et al., Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry, Nature Biotechnol. 16, 743–747 (1998).

    Article  CAS  Google Scholar 

  20. F. M. Batliwalla, N. Rufer, P. M. Lansdorp, et al., Oligoclonal expansions in the CD8+ CD28 T cells largely explain the shorter telomeres detected in this subset: analysis by flow FISH, Hum. Immunol. 61, 951–958 (2000).

    Article  PubMed  CAS  Google Scholar 

  21. T. L. Ware, H. Wang, and E. H. Blackburn, Three telomerases with completely non-telomeric template replacements are catalytically active, EMBO J., 19, 3119–3131 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. C. Meplan and P. Hainaut, Molecular alchemy of the tumor suppressor protein p53: metals and cell growth control, J. Trace Elements Exp. Med. 4, 337–346 (1999).

    Article  Google Scholar 

  23. R. L. Nelson, Iron and colorectal cancer risk: human studies, Nutr. Rev. 59, 140–148 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. X. F. Yuan and C. C. Tang, The accumulation effect of lead on DNA damage in mice blood cells of three generations and the protection of selenium, J. Environ. Sci. Health A: Toxic/Hazard. Subst. Environ. Eng. A36, 501–508 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Wang, H., Hu, D. et al. Effects of trace elements on the telomere lengths of hepatocytes L-02 and hepatoma cells SMMC-7721. Biol Trace Elem Res 100, 215–227 (2004). https://doi.org/10.1385/BTER:100:3:215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:100:3:215

Index Entries

Navigation