Skip to main content
Log in

Selenium supplementation and blood rheological improvement in Japanese adults

  • Short Communication
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In order to study the prevention effect of selenium in the development of cardiovascular disease, we investigated the effects of selenium supplementation on the blood rheological properties. Eleven healthy adults were administered with 200 μg of selenium in the form of selenium yeast per day for 1 wk. Before and after the supplementation, serum selenium concentration, glutathione peroxidase (GPx) activity, biochemical indices, and the blood fluidity of the subjects were measured. The blood fluidity was measured using a (microchannel array flow analyzer) by the passage time of 100 μL of heparinized whole blood through the microchannel array. The selenium supplementation significantly (p=0.001) shortened the mean blood passage time from 44.0±5.7 to 37.5±2.8 s. Serum selenium concentration significantly (p=0.008) increased from 109.8±10.2 to 124.5±16.7 μg/L. Meanwhile, the GPx activity did not increased significantly (p=0.058). The mean GPx activity of the subjects before supplementation was 171.0±16.1 Δmmol NADPH/min/L and 180.9±17.8 Δmmol NADPH/min/L after supplementation. Factor analysis of the passage time and biochemical indices of the subjects showed that blood fluidity improvement was related to the metabolic modification of lipoproteins during the selenium supplementation. These results showed that selenium supplementation improved the blood fluidity, without increasing the GPx activity of the subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. P. Suadicani, H. O. Hein, and F. Gyntelberg, Serum selenium concentration and risk of ischaemic heart disease in a prospective cohort study of 3000 males, Atherosclerosis 96, 33–42 (1992).

    Article  PubMed  CAS  Google Scholar 

  2. X. Qu, K. Huang, L. Deng, and H. Xu, Selenium deficiency-induced alterations in the vascular system of the rat, Biol. Trace Element Res. 75, 119–128 (2000).

    Article  CAS  Google Scholar 

  3. S. Tanguy, M. C. Toufektsian, S. Besse, V. Ducros, J. De Leiris, and F. Boucher, Dietary selenium intake affects cardiac susceptibility to ischaemia/reperfusion in male senescent rats, Age Ageing 32, 273–278 (2003).

    Article  PubMed  Google Scholar 

  4. Q. Wu and K. Huang, Inhibiting effect of selenium on oxysterols-induced apoptosis of rat vascular smooth muscle cells, J. Inorg. Biochem. 98, 1678–1685 (2004).

    Article  CAS  Google Scholar 

  5. J. T. Deagen, M. A. Beilstein, and P. D. Whanger, Chemical forms of selenium in selenium containing proteins from human plasma, J. Inorg. Biochem. 41, 261–268 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. R. F. Burk, K. E. Hill, and A. K. Motley, Plasma selenium in specific and non-specific forms, Biofactors 14, 107–114 (2001).

    PubMed  CAS  Google Scholar 

  7. K. Takahashi, N. Avissar, J. Whitin, and H. Cohen, Purification and characterization of human plasma glutathione peroxidase: a selenoglycoprotein distinct from the known cellular enzyme, Arch. Biochem. Biophys. 256, 677–686 (1987).

    Article  PubMed  CAS  Google Scholar 

  8. D. J. Broderick, J. T. Deagen, and P. D. Whanger, Properties of glutathione peroxidase isolated from human plasma, J. Inorg. Biochem. 30, 299–308 (1987).

    Article  PubMed  CAS  Google Scholar 

  9. K. R. Maddipati, C. Gasparski, and L. J. Marnett, Characterization of the hydroperoxide-reducing activity of human plasma, Arch. Biochem. Biophys. 254, 9–17 (1987).

    Article  PubMed  CAS  Google Scholar 

  10. R. F. Burk and P. E. Gregory, Some characteristics of 75Se-P, a selenoprotein found in rat liver and plasma, and comparison of it with selenoglutathione peroxidase, Arch. Biochem. Biophys. 213, 73–80 (1982).

    Article  PubMed  CAS  Google Scholar 

  11. M. A. Motsenbocker and A. L. Tappel, Selenocysteine-containing proteins from rat and monkey plasma, Biochim. Biophys. Acta 704, 253–260 (1982).

    PubMed  CAS  Google Scholar 

  12. B. Akesson and B. Martensson, Chromatography of selenoproteins in human serum using matrix-bound heparin, Int. J. Vitam. Nutr. Res. 61, 72–76 (1991).

    PubMed  CAS  Google Scholar 

  13. Y. Gao, Y. Liu, G. Deng, and Z. Wang, Distribution of selenium-containing proteins in human serum, Biol. Trace Element Res. 100, 105–116 (2004).

    Article  CAS  Google Scholar 

  14. J. A. Butler, P. D. Whanger, A. J. Kaneps, and N. M. Patton, Metabolism of selenite and selenomethionine in the rhesus monkey, J. Nutr. 120, 751–759 (1990).

    PubMed  CAS  Google Scholar 

  15. R. F. Burk and K. E. Hill, Regulation of selenoproteins, Annu. Rev. Nutr. 13, 65–81 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. L. Schomburg, U. Schweizer, and J. Kohrle, Selenium and selenoproteins in mammals: extraordinary, essential, enigmatic, Cell. Mol. Life Sci. 61, 1988–1995 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. L. A. Daniels, Selenium metabolism and bioavailability, Biol. Trace Element Res. 54, 185–199 (1996).

    CAS  Google Scholar 

  18. K. Huang, H. Liu, Z. Chen, and H. Xu, Role of selenium in cyptoprotection against cholesterol oxide-induced vascular damage in rats, Atherosclerosis 162, 137–144 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. E. M. Alissa, S. M. Bahijri, and G. A. Ferns, The controversy surrounding selenium and cardiovascular disease: a review of the evidence, Med. Sci. Monit. 9, RA9-RA18 (2003).

    PubMed  Google Scholar 

  20. S. Ohkubu, N. Nakahata, and Y. Ohizumi, Thromboxane A2-mediated shape shange: independent of Gq-phospsolipase C−Ca2+ pathway in rabbit platelets, Br. J. Pharmacol. 117, 1095–1104 (1996).

    Google Scholar 

  21. S. A. Saeed, H. Rasheed, and A. H. Gilani, Synergism interaction between arachidonic acid by 5-hydroxytryptamine in human platelet aggregation is mediated through multiple signaling pathways, Acta Pharmacol. Sin. 24, 958–964 (2003).

    PubMed  CAS  Google Scholar 

  22. Y. Kikuchi, K. Sato, H. Ohki, and T. Kaneko, Optically accessible microchannels formed in a single-crystal silicon substrate for studies of blood rheology, Microvasc. Res. 44, 226–240 (1992).

    Article  PubMed  CAS  Google Scholar 

  23. Y. Kikuchi, Q. W. Da, and T. Fujino, Variation in blood cell deformability and possible consequences for oxygen transport tissue, Microvasc. Res. 47, 222–231 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. J. H. Watkinson, Fluorometric determination of selenium in biological material with 2,3-diaminonaphthalene, Anal. Chem. 38, 92–97 (1966).

    Article  PubMed  CAS  Google Scholar 

  25. D. E. Paglia and W. N. Valentine, Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, J. Lab. Clin. Med. 70, 158–169 (1967).

    PubMed  CAS  Google Scholar 

  26. Y. Cao, C. Reddy, and L. Sordillo, Altered eicosanoid biosynthesis in selenium-deficient endothelial cells, Free Radical Biol. Med. 28, 381–389 (2000).

    Article  CAS  Google Scholar 

  27. J. R. Vane, E. E. Anggard, and R. M. Botting, Mechanisms of disease-regulatory functions of the vascular endothelium, N. Engl. J. Med. 323, 27–36 (1990).

    Article  PubMed  CAS  Google Scholar 

  28. T. Suzuki, H. Imai, K. Kobayashi, et al., Dietary intake of selenium in Japan: an estimation from analytical and reported values of selenium in foodstuffs and cooked dishes, Nihon Eiyo Shokuryo Gakkai Shi 41, 91–102 (1988).

    Google Scholar 

  29. H. Tapiero, D. M. Townsend, and K. D. Tew, The antioxidant role of selenium and seleno-compound, Biomed. Pharmacother. 57, 134–14 (2003).

    Article  PubMed  CAS  Google Scholar 

  30. R. Brigelius-Flohe, B. Friedrichs, S. Maurer, and R. Streicher, Determinants of PHGPx expression in a cultured endothelial cell line, Biomed. Environ. Sci. 10, 163–176 (1997).

    PubMed  CAS  Google Scholar 

  31. N. Avissar, E. A. Kerl, S. S. Baker, and H. J. Cohen, Extracellular glutathione peroxidase mRNA and protein in human sell lines, Arch. Biochem. Biophys. 309, 239–246 (1994).

    Article  PubMed  CAS  Google Scholar 

  32. G. V. Kryukov, S. Castellano, S. V. Novoselov, et al., Characterization of mammalian selenoproteomes, Science 278, 1439–1443 (2003).

    Article  CAS  Google Scholar 

  33. F. F. Chu, R. S. Esworthy, Y. S. Ho, M. Bermeister, K. Swiderek, and R. W. Elliot, Expression and chromosomal mapping of mouse GPx2 gene encoding the gastrointestinal form of glutathione peroxidase, GPX-GI, Biomed. Environ. Sci. 10, 156–162 (1997).

    PubMed  CAS  Google Scholar 

  34. K. Wingler, M. Bocher, L. Flohe, H. Kollmus, and R. Brigelius-Flohe, mRNA stability and selenocysteine insertion sequence efficiency rank gastrointestinal glutathion peroxidase high in the hierarchy of selenoproteins, Eur. J. Biochem. 259, 149–157 (1999).

    Article  PubMed  CAS  Google Scholar 

  35. R. Brigelius-Flohe, Tissue-specific functions of individual glutathione peroxidases, Free Radical Biol. Med. 27, 951–965 (1999).

    Article  CAS  Google Scholar 

  36. F. F. Chu, S. Esworthy, and J. H. Doroshow, Role of Se-dependent glutathione peroxidases in gastrointestinal inflammation and cancer, Free Radical Biol. Med. 36, 1481–1495 (2004).

    Article  CAS  Google Scholar 

  37. G. McHedlishvili and N. Maeda, Blood flow structure related to red cell flow: a determinant of blood fluidity in narrow microvessels, Jpn. J. Physiol. 51, 19–30 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. Y. Suzuki, N. Tateishi, M. Soutani, and N. Maeda, Deformation of erythrocytes in microvessels and glass capillaries: effect of erythrocyte deformability, Microcirculation 3, 49–57 (1996).

    Article  PubMed  CAS  Google Scholar 

  39. E. Ernst and K. L. Resch, Fibrinogen as a cardiovascular risk factor: a meta analysis and review of the literature, Ann. Intern. Med. 118, 956–963 (1993).

    PubMed  CAS  Google Scholar 

  40. E. Ernst, T. Weihmayr, M. Schmid, M. Baumann, and A. Matrai, Cardiovascular risk factors and hemorheology. Physical, fitness, stress and obesity, Atherosclerosis 59, 263–269 (1986).

    Article  PubMed  CAS  Google Scholar 

  41. W. Koenig and E. Ernst, The possible role of hemorheology in atherothrombogenesis, Atherosclerosis 94, 93–107 (1992).

    Article  PubMed  CAS  Google Scholar 

  42. F. Marotta, P. Safran, H. Tajiri, et al., Improvement of hemorheological abnormalities in alcoholics by an oral antioxidant, Hepatogastroenterology 48, 511–517 (2001).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulah, R., Koyama, H., Miyazaki, K. et al. Selenium supplementation and blood rheological improvement in Japanese adults. Biol Trace Elem Res 112, 87–96 (2006). https://doi.org/10.1385/BTER:112:1:87

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:112:1:87

Index Entries

Navigation