Skip to main content
Log in

Induction of micronuclei by zinc in human leukocytes

A study using cytokinesis-block micronucleus assay

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In the present study, we report the results of the capability of zinc chloride for the induction of micronuclei in cultured human leukocytes using cytokinesis-block micronucleus assay. Two concentrations of zinc chloride (1.5 × 10−4 M and 3.0 × 10−4 M) were used to evaluate the potential of this zinc salt to induce micronucleus formation. This effect was compared with positive (mitomycin C treated) and negative controls (no salt added). Our results show a significant (p ≤ 0.001) increase of micronucleated cytokinesis-blocked cells (MNCBs) in zinc-chloride-treated cells compared to the negative control. Induction of MNCBs was not in a dose-dependent manner for zinc chloride concentrations tested. This report is the first to describe the efficiency of cytokinesis-block micronucleus assay to evaluate the genotoxic effects of zinc salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Rubin, Non-specific nature of the stimulus to DNA synthesis in cultured chick embryo cells, Proc. Natl. Acad. Sci. USA 72, 1676 (1975).

    Article  PubMed  CAS  Google Scholar 

  2. C. E. Outten and T. V. O’Halloran, Famtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis, Science 292, 2488 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. M. A. Brown, J. V. Thorn, G. L. Orth, and J. Jaurez, Food poisoning involving zinc contamination, Arch. Environ. Health 8, 657 (1964).

    PubMed  CAS  Google Scholar 

  4. D. R. Benett, C. J. Baird, K. M. Chan, P. F. Crookes, C. G. Bremner, M. M. Gottilieb, et al., Zinc toxicity following massive coin ingestion, Am. J. Forensic Med. Pathol. 18, 148 (1997).

    Article  Google Scholar 

  5. A. Yamataka, K. C. Prigle, and J. Wyeth, A case of zinc chloride ingestion, J. Pediatr. Surg. 33, 660 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. L. P. Boss, W. A. Van Volten, A. F. D. Smit, and M. Nube, Zinc deficiency with skin lesions as seen in acrodermatitis enteropathica and intoxication with zinc during perenteral nutrition, Neth. J. Med. 20, 263 (1977).

    Google Scholar 

  7. J. A. Brocks, H. Reid, and G. Glazer, Acute intervenous zinc poisoning. Br. Med. J. 28, 1390 (1977).

    Article  Google Scholar 

  8. G. Samanta, G. Chattopadhyay, B. K. Mondal, T. Ray Chowdhury, P. P. Chowdhury, C. R. Chandra, et al., Air pollution in Calcutta during winter—a three year study. Curr. Sci. 75, 123 (1998).

    CAS  Google Scholar 

  9. M. Bauchinger, E. Schmid, H. J. Einbrodt, and J. Dresp, Chromosome aberrations in lymphocytes after occupational exposure to lead and cadmium, Mutat. Res. 40, 57 (1976).

    Article  PubMed  CAS  Google Scholar 

  10. W. S. Beckett, L. C. Chen, G. Cosma, J. Fine, and S. Garte, Metal fume fever, Gov. Rep. Announ. Index 24, 1 (1997).

    Google Scholar 

  11. A. S. Prasad, Clinical, biochemical, and pharmacological role of zinc, Annu. Rev. Pharmacol. Toxicol. 20, 393 (1979).

    Article  Google Scholar 

  12. C. J. Horng and S. R. Lin, Determination of urinary zinc, chromium, and copper in steel production workers, Biol. Trace Element Res. 55, 307 (1996).

    CAS  Google Scholar 

  13. M. Bilban, Influence of the work environment in a Pb-Zn mine on the incidence of cytogenetic damage in miners, Am. J. Ind. Med. 34, 455 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. L. M. Kalinina, G. H. Polukhina, and L. I. Lukasheva, A test system for the detection of mutagenic activity of environmental pollutants, Genetika 13, 1089 (1977).

    PubMed  CAS  Google Scholar 

  15. Gh. Deknudt and M. Deminatti, Chromosome studies in human lymphocytes after in vitro exposure to metal salts, Toxicology 10, 67 (1978).

    Article  PubMed  CAS  Google Scholar 

  16. Gh. Deknudt and G. B. Gerber, Chromosome aberrations in bone marrow cells of mice given a normal or calcium deficient diet supplemented with various heavy metals, Mutat. Res. 68, 163 (1979).

    Article  PubMed  CAS  Google Scholar 

  17. M. Santra, G. Talukder, and A. Sharma, Clastogenic effects of zinc chloride on human peripheral blood leucocytes in vitro, Cytobios 102, 55 (2000).

    PubMed  CAS  Google Scholar 

  18. M. Santra, G. Talukder, and A. Sharma, Comparison of chromosome damage induced by three zinc compounds using human leukocyte culture, Biol. Trace Element Res. 78, 113 (2000).

    Article  CAS  Google Scholar 

  19. M. Fenech, Important variables that influence base line micronucleus frequency in cytokinesis-blocked lymphocytes—a biomarker for DNA damage in human populations, Mutat. Res. 404, 155 (1998).

    PubMed  CAS  Google Scholar 

  20. M. Fenech, The cytokinesis-block micronucleus technique and its application to genotoxicity studies in human populations, Environ. Health Prospect. 101, 101 (1993).

    Article  CAS  Google Scholar 

  21. M. Kirsch-Volders, Towards a validation of micronucleus test, Mutat. Res. 392, 1 (1997).

    PubMed  CAS  Google Scholar 

  22. P. S. Moorhead, P. C. Nowell, W. J. Mellman, D. M. Battips, and D. A. Hungerford, Chromosome preparation of leukocytes cultured from peripheral blood, Exp. Cell Res. 20, 613 (1960).

    Article  PubMed  CAS  Google Scholar 

  23. M. Fenech and A. A. Morley, Measurement of micronuclei in lymphocytes, Mutat. Res. 147, 24 (1985).

    Google Scholar 

  24. M. Fenech and A. A. Morley, Cytokinesis-block micronucleus method in human lymphocytes; effects of in vivo aging and low dose x-irradiation, Mutat. Res. 161, 193 (1986).

    PubMed  CAS  Google Scholar 

  25. R. Huber and M. Bauchinger, Development and perspectives of the human lymphocyte micronucleus assay, in Advances in Mutagenesis Research 1, G. Obe, ed., Springer-Verlag, Berlin, p. 89 (1990).

    Google Scholar 

  26. R. R. Sokal and F. J. Rohlf, Introduction to Biostatistics, W. H. Freeman, San Francisco (1973).

    Google Scholar 

  27. S. Bonassi, M. Fenech, C. Lando, Y. P. Lin, M. Ceppi, W. P. Chang, et al., HUman MicroNucleus project: international database comparison for results with the cytokinesis-block micronucleus assay in human lymphocytes: I. Effect of laboratory protocol, scoring criteria, and host factors on the frequency of micronuclei, Environ. Mol. Mutagen. 37, 31 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. M. Kirsch-Volders, T. Sofuni, M. Albertini, D. Eastmond, M. Fenech, M. Ishidate, Jr., et al., Report from the In Vitro Micronucleus Assay Working Group, Environ. Mol. Mutagen. 35, 167 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. M. Fenech, The in vitro micronucleus technique, Mutat. Res. 455, 81 (2000).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santra, M., Das, S.K., Talukder, G. et al. Induction of micronuclei by zinc in human leukocytes. Biol Trace Elem Res 88, 139–144 (2002). https://doi.org/10.1385/BTER:88:2:139

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:88:2:139

Index Entries

Navigation