Skip to main content
Log in

Effect of selenium depletion and supplementation on the kinetics of type 1 5′-iodothyronine deiodinase and T3/T4 in rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Presently, the effect of selenium (Se) deficiency and excess of Se (1 ppm) on the activity of selenoenzymes type 1 5′-iodothyronine deiodinase (5′-DI), glutathione peroxidase (GSH-Px), and level of thyroid hormones (T3 and T4) was studied in rats. Se levels in the serum and liver, T3 and T4 in the serum, GSH-Px levels in the liver, and 5′-DI activity in the liver/aorta/thyroid were estimated after 1, 2, and 3 mo of Se-deficient (0.02 ppm), Se-adequate (0.2 ppm), and Se-excess (1 ppm) diet feeding. All of these parameters decreased significantly in the Se-deficient group as compared to the adequate group. Within the deficient group, as the Se deficiency progressed, all of the parameters except 5′-DI decreased after 2 and 3 mo in comparison to 1-mo data. Thyroidal 5′-DI activity in Se deficiency showed the maximum increase. A significant increase was observed in all of the above parameters in the 1 ppm Se-supplemented diet group when compared with the adequate Se group; also, as the Se deposition increased within the Se-excess diet group, a significant increase was observed in all of the above parameters. However, as observed by others, the intake of excess of Se (i.e., 2 ppm in the diet) did not elevate the activities of selenoenzymes and thyroid hormones; rather, it had adverse effects. The present study concludes that Se supplementation at least up to 1 ppm enhances the selenoenzyme activities, and above this level, it may not be considered as an indicator of selenoenzyme activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. J. Backett, S. E. Beddows, P. C. Morrice, et al., Inhibition of hepatic deiodination of thyroxine caused by selenium deficiency in rats, Biochem. J. 248, 443–447 (1987).

    Google Scholar 

  2. R. Boyne and J. R. Arthur, An in vivo and in vitro study of selenium deficiency and infection in rats, J. Comp. Pathol. 96, 379–386 (1986).

    Article  PubMed  CAS  Google Scholar 

  3. R. Boyne and J. R. Arthur, The response of selenium deficient mice to Candida albicans infection, J. Nutr. 116, 816–822 (1986).

    PubMed  CAS  Google Scholar 

  4. J. R. Arthur, F. Nicol, R. Boyne, et al., Old and new roles for selenium, in Trace Substances in Environmental Health XXI, D. D. Hemphill, ed., University of Missouri Press, Columbia, OH, pp. 487–488 (1987).

    Google Scholar 

  5. J. R. Arthur and G. J. Backett, Selenium deficiency and thyroid hormone metabolism, in Selenium in Biology and Medicine, A. Wendel, ed., Springer-Verlag Heidelberg, pp. 90–105 (1989).

    Google Scholar 

  6. J. Palmblad, U. Adamson, U. Rosenqvist, et al., Neutrophil function in hypothyroid patients, Acta Med. Scand. 210, 287–291 (1981).

    Article  PubMed  CAS  Google Scholar 

  7. P. D. Whanger and J. A. Butler, Effects of various dietary levels of selenium as selenite or selenomethionine on tissue selenium levels and glutathione peroxidase activity in rats, J. Nutr. 118, 846–852 (1988).

    PubMed  CAS  Google Scholar 

  8. C. Ip and C. Hayes, Tissue selenium levels in selenium supplemented rats and their relevance in mammary cancer protection, Carcinogenesis 10, 921–925 (1989).

    PubMed  CAS  Google Scholar 

  9. J. R. Arthur, F. Nicol, and G. J. Beckett, Hepatic iodothyronine deiodinase: the role of selenium, Biochem. J. 272, 537–540 (1990).

    PubMed  CAS  Google Scholar 

  10. D. Behne, G. Kyriakopoulos, H. Meinhold, et al., Identification of type-1 iodothyronine 5′-deiodinase as a selenoenzyme, Biochem. Biophys. Res. Commun. 173, 1143–1149 (1990).

    Article  PubMed  CAS  Google Scholar 

  11. M. J. Berry, L. Banu, and P. R. Larsen, Type-1 iodothyronine deiodinase is a selenocysteine containing enzyme, Nature (London) 349, 438–340 (1991).

    Article  CAS  Google Scholar 

  12. S. J. Mendel, M. J. Berry, J. D. Keiffer, et al., Cloning and in vitro expression of the human selenoprotein, type-1 iodothyronine deiodinase, J. Clin. Endocrinol. Metab. 75, 1133–1139 (1992).

    Article  Google Scholar 

  13. S. G. Beech, S. W. Walker, G. J. Beckett, et al., Effect of selenium depletion on thyroidal type-1 iodothyronine deiodinase activity in isolated human thyrocytes and rat thyroid and liver, Analyst 120, 827–831 (1995).

    Article  PubMed  CAS  Google Scholar 

  14. P. Laurberg, Mechanisms governing the relative proportions of thyroxine and 3,5,3′-triiodothyronine in thyroid secretion, Metab. Clin. Exp. 33, 379–392 (1984).

    PubMed  CAS  Google Scholar 

  15. H. Ishii, M. Inada, K. Tanaka, et al., Induction of outer and inner ring monodeiodinases in human thyroid gland by thyrotropin, J. Clin. Endocrinol. Metab. 57, 500–505 (1983).

    PubMed  CAS  Google Scholar 

  16. S. Vadhanvikit and H. E. Ganther, Selenium requirements of rats for normal hepatic and thyroidal 5′-deiodinase (type-I) activities, J. Nutr. 123, 1124–1128 (1993).

    Google Scholar 

  17. R. F. Burk, Production of selenium deficiency in the rat, Methods Enzymol. 143, 307–313 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. R. Hasunuma, T. Ogawi, and Y. Kawaniska, Fluorimetric determination of selenium in nanogram amounts in biological materials using 2,3-diaminonapthalene, Anal. Biochem. 126, 242–245 (1982).

    Article  PubMed  CAS  Google Scholar 

  19. D. E. Paglia and W. N. Valentine, Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, J. Lab. Clin. Med. 70, 158–168 (1967).

    PubMed  CAS  Google Scholar 

  20. O. H. Lowry, N. J. Rosebrough, A. L. Farr, et al., Protein measurement with Folin-phenol reagent, J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  21. G. J. Backett, D. A. Macdougall, F. Nicol, et al., Inhibition of type-I and type-II iodothyronine deiodinase activity in rat liver, kidney and brain produced by selenium deficiency, Biochem. J. 259, 887–892 (1989).

    Google Scholar 

  22. J. R. Arthur, F. Nicol, P. W. H. Rae, et al., Effects of selenium deficiency on the thyroid gland and on plasma and pituitary thyrotropin and growth hormone concentrations in the rat Clin. Chem. Enzyme Commun. 3, 209–214 (1990).

    Google Scholar 

  23. D. Behne, H. Hilmert, H. Schied, et al., Evidence for specific selenium target tissues and new biologically important selenoprteins, Biochem. Biophys. Acta 966, 12–21 (1988).

    PubMed  CAS  Google Scholar 

  24. D. Behne and A. Kyariakopoulos, Effects of dietary selenium on the tissue concentrations of type-I iodothyronine deiodinase and other selenoproteins, Am. J. Clin. Nutr. 57(Suppl.), 310S-312S (1993).

    PubMed  CAS  Google Scholar 

  25. M. Oertel, M. Gross, H. Rokos, et al., Selenium dependent regulation of type-I 5′-deiodinase expression, Am. J. Clin. Nutr. 57(Suppl.), 313S-314S (1993).

    PubMed  CAS  Google Scholar 

  26. H. Meinhold, A. Campos-Barros, B. Walzog, et al., Effects of selenium and iodine deficiency on type-I, type-II and type-III iodothyronine deiodinases and circulating hormone levels in the rat, Exp. Clin. Endocrinol. 100, 87–93 (1993).

    Article  Google Scholar 

  27. J. P. Chanoine, M. Safran, A. P. Farewell, et al., Selenium deficiency and type-II 5′-deiodinase regulation in the euthyroid and hypothyroid rat: evidence of a direct effect of thyroxine, Endocrinology 130, 479–484 (1992).

    Article  Google Scholar 

  28. J. M. Bates, V. L. Spate, J. S. Morris, et al., Effects of selenium deficiency on tissue selenium content, deiodinase activity and thyroid hormone economy in the rat during development, Endocrinology 141, 2490–2500 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. A. C. Guyton, Textbook of Medical Physiology, 8th ed. W. B. Saunders, Philadelphia (1991).

    Google Scholar 

  30. G. J. Backett, F. Nicol, P. W. H. Rae, et al., Effects of combined iodine and selenium deficiency on thyroid hormone metabolism, in rats, Am. J. Nutr. 57(Suppl.), 240S-243S (1993).

    Google Scholar 

  31. A. Pizzulli and A. Ranjbar, Selenium deficiency and hypothyroidism: a new etiology in differential diagnosis of hypothyroidism in children, Biol. Trace Element Res. 77, 199–208 (2000).

    Article  CAS  Google Scholar 

  32. P. Toy, S. Hatfield, R. Bull, et al., The effects of different levels of selenium administered to rats in drinking water on distribution and glutathione peroxidase, Res. Commun. Chem. Pathol. Pharmacol. 21, 115–131 (1978).

    PubMed  CAS  Google Scholar 

  33. D. Behne, A. Kyriakopoulos, H. Gessner, et al., Type-I iodothyronine deiodinase activity after high selenium intake and relations between selenium and iodine metabolism in rats, J. Nutr. 122, 1542–1546 (1992).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhingra, S., Singh, U. & Bansal, M.P. Effect of selenium depletion and supplementation on the kinetics of type 1 5′-iodothyronine deiodinase and T3/T4 in rats. Biol Trace Elem Res 97, 95–104 (2004). https://doi.org/10.1385/BTER:97:1:95

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:97:1:95

Index Entries

Navigation