Skip to main content
Log in

Hyperoxia augments pulmonary lipofibroblast-to-myofibroblast transdifferentiation

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Bronchopulmonary dysplasia (BPD) remains a major cause of morbidity and mortality in premature infants, and despite many advances, its pathophysiology remains incompletely understood. Exposure of the premature lung to hyperoxia is commonly implicated in its pathogenesis. However, the exact link between hyperoxia and BPD, particularly its role in the generation of myofibroblasts, the signature cell-type for lung fibrosis, is undetermined. There is increasing evidence that lipid interstitial fibroblasts play an important role in injury-repair mechanisms in various organ systems. This study demonstrates that exposure to hyperoxia augments the transdifferentiation of pulmonary lipofibroblasts to myofibroblasts. Fetal rat lung fibroblasts (ERLF) from embryonic (e) (term=e22) 18 and e21 gestation were studied. After initial culture in minimum essential medium (MEM) and 10% fetal bovine serum (FBS) in 21% O2/5% CO2 at 37°C, FRLF were maintained in MEM and 10% FBS at 37°C under control (21% O2/5% CO2) and under experimental conditions (24-hour exposure to 95% O2/5% CO2) at passage (P) 1 and 5. At each passage, cells were allowed to attach to 100 cm2 culture dishes and grow in 21% O2 before being subjected to the experimental conditions. Passage 1 and 5 cells were analyzed for the expression of well-characterized lipogenic and myogenic markers based on semiquantitative competitive RT-PCR (for parathyroid hormone-related protein receptor [PTHrPR]), adipose differentiation related protein (ADRP), and α smooth muscle actin (αSMA), triglyceride uptake, and leptin assay. Serial passage and maintenance of cells in 21% O2 resulted in a significant decrease in the expression of the lipogenic markers from P1 to P5, spontaneously. This decrease was greater for e18 than for e21 FRLF. However, exposing cells to 95% O2 augmented the loss of the lipogenic markers and gain of the myogenic marker from P1 to P5 in comparison to cells maintained in 21% O2. These changes were also greater for e18 vs e21 lipofibroblasts. These changes in mRNA expression were accompanied by decreased triglyceride uptake and leptin secretion on exposure to hyperoxia. These results suggest that exposure to hyperoxia (95% O2) augments the transdifferentiation of pulmonary lipofibroblasts to myofibroblasts. Hyperoxia-augmented transdifferentiation was at least partially attenuated by prostaglandin J2 pretreatment. Lipofibroblast-to-myofibroblast transdifferentiation may be an important mechanism for hyperoxic lung injury and may be an important element in the pathophysiology of BPD. In addition, induction of adipogenic transcription factors may not only prevent but, in fact, may reverse the myogenic fibroblast phenotype to the adipogenic fibroblast phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Stevenson, D. K., Wright, L. L., Lemons, J. A., et al. (1998) Very low birth weight outcomes of the National Institute of Child Health and Human Development Neonatal Research Network January 1993 through December 1994. Am. J. Obstet. Gynecol. 179, 1632–1639.

    Article  PubMed  CAS  Google Scholar 

  2. Warner, B. B., Stuart, R. A., Papes, R. A., and Wispe, J. R. (1998) Functional and pathological effects of prolonged hyperoxia in neonatal mice. Am. J. Physiol. 275, L110-L117.

    PubMed  CAS  Google Scholar 

  3. Saugstad, O. D. (2001) Chronic lung disease: oxygen dogma revisited. Acta Paediatr. 90, 113–115.

    Article  PubMed  CAS  Google Scholar 

  4. Fardy, C. H. and Silverman, M. (1995) Antioxidants in neonatal lung disease. Arch. Dis. Child. Fetal. 73, F112-F117.

    Article  CAS  Google Scholar 

  5. Coalson, J. J., Winter, V., and deLemos, R. A. (1995) Decreased alveolarization in baboon survivors with bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 152, 640–646.

    PubMed  CAS  Google Scholar 

  6. Jobe, A. J. (1999) The new BPD: An arrest of lung development. Pediatr. Res. 46, 641–643.

    Article  PubMed  CAS  Google Scholar 

  7. Husain, N. A., Siddiqui, N. H., and Stocker, J. R. (1998) Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum. Pathol. 29, 710–717.

    Article  PubMed  CAS  Google Scholar 

  8. Torday, J. S., Torres, E., and Rehan, V. K. (2003) The role of fibroblast transdifferentiation in lung epithelial cell proliferation, differentiation and repair. Pediatr. Pathol. Mol. Med. 22, 189–207.

    Article  PubMed  CAS  Google Scholar 

  9. Phan, S. H., Zhang, K., Zhang, H. Y., and Gharaee-Kermani, M. (1999) The myofibroblast as an inflammatory cell in pulmonary fibrosis. Curr. Top. Pathol. 93, 173–182.

    PubMed  CAS  Google Scholar 

  10. Gauldie, J., Sime, P. J., Xing, Z., Marr, B., and Tremblay, G. M. (1997) Transforming growth factor-beta gene transfer to the lung induces myofibroblast presence and pulmonary fibrosis. Curr. Top. Pathol. 93, 35–45.

    Google Scholar 

  11. Toti, P., Buonocore, G., Tanganelli, P., et al. (1997) Bronchopulmonary dysplasia of the premature baby: an immunohistochemical study. Pediatr. Pulmonol. 24, 22–28.

    Article  PubMed  CAS  Google Scholar 

  12. Rehan, V. K., Ling, W., Feng, S., Rehan, Y. H., and Torday, J. S. (2001) Hyperoxia augments pulmonary transdifferentiation to myofibroblasts. Baltimore, Academy of Pediatric, Societies A1716.

    Google Scholar 

  13. Boros, L. G., Torday, J. S., Lee, W.-N., and Rehan, V. K. (2002) Metabolic characterization of oxygen triggered transdifferentiation in immature rat fetal lung fibroblast. Mol. Genet. Metab. 77, 230–236.

    Article  PubMed  CAS  Google Scholar 

  14. Martinet, Y., Menard, O., Vaillant, P., Vignaud, J. M., and Martinet, N. (1996) Cytokines in human lung fibrosis. Arch. Toxicol. Suppl. 18, 127–139.

    PubMed  CAS  Google Scholar 

  15. Dooley, S., Delvoux, B., Lahme, B., Mangasser-Stephan, K., and Gressner, A. M. (2000) Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology 31, 1094–1096.

    Article  PubMed  CAS  Google Scholar 

  16. Shimizu, E., Kobayashi, Y., Oki, Y., Kawasaki, T., Yoshimi, T., Nakamura, H. (1999) OPC-13013, a cyclic nucleotide phosphodiesterase type III, inhibitor, inhibits cell proliferation and transdifferentiation of cultured rat hepatic stellate cells. Life Sci. 64, 2081–2088.

    Article  PubMed  CAS  Google Scholar 

  17. McGowan, S. E. and Torday, J. S. (1997) The pulmonary lipofibroblast (lipid interstitial cell) and its contributions to alveolar development. Annu. Rev. Physiol. 59, 43–62.

    Article  PubMed  CAS  Google Scholar 

  18. Sugahara, K., Mason, R. J., and Shannon, J. M. (1998) Effects of soluble factors and extracellular matrix on DNA synthesis and surfactant gene expression in primary cultures of rat alveolar type II cells. Cell Tissue Res. 291, 295–303.

    Article  PubMed  CAS  Google Scholar 

  19. Lebeche, D., Malpel, S., and Cardoso, W. V. (1999) Fibroblast growth factor interactions in the developing lung. Mech. Dev. 86, 125–136.

    Article  PubMed  CAS  Google Scholar 

  20. Adamson, I. Y., Young, L., and King, G. M. (1991) Reciprocal epithelial: fibroblast interactions in the control of fetal and adult rat lung cells in culture. Exp. Lung Res. 17, 821–835.

    Article  PubMed  CAS  Google Scholar 

  21. Shannon, J. M., Pan, T., Nielsen, L. D., Edeen, K. E., and Mason, R. J. (2001) Lung fibroblasts improve differentiation of rat type II cells in primary culture. Am. J. Respir. Cell. Mol. Biol. 24, 235–244.

    PubMed  CAS  Google Scholar 

  22. Smith, B. T. and Post, M. (1989) Fibroblast-pneumonocyte factor. Am. J. Physiol. 257, L174-L178.

    PubMed  CAS  Google Scholar 

  23. O'Reilly, M. A., Stripp, B. R., and Pryhuber, G. S. (1997) Epithelial-mesenchymal interactions in the alteration of gene expression and morphology following lung injury. Microsc. Res. Tech. 38, 473–479.

    Article  PubMed  Google Scholar 

  24. Heath, V. J., Gillespie, D. A., and Crouch, D. H. (2000) Inhibition of the terminal stages of adipocyte differentiation by cMyc. Exp. Cell Res. 254, 91–98.

    Article  PubMed  CAS  Google Scholar 

  25. Bruce, M. C., Honaker, C. E., and Cross, R. J. (1999) Lung fibroblasts undergo apoptosis following alveolarization. Am. J. Respir. Cell Mol. Biol. 20, 228–236.

    PubMed  CAS  Google Scholar 

  26. Gressner, A. M. (1996) Transdifferentiation of hepatic stellate cells (Ito cells) to myofibroblasts: a key event in hepatic fibrogenesis. Kidney Int. Suppl. 54, S39-S45.

    PubMed  CAS  Google Scholar 

  27. Torday, J. S., Torday, D. P., Gutnick, J., and Rehan, V. (2001) Biologic role of fetal lung fibroblast triglycerides as antioxidants. Pediatr. Res. 49, 1–7.

    Article  Google Scholar 

  28. Chomczynski, P. and Sacchi, N. (1987) Single step method of RNA isolation by acid guanidinium thiocynate-phenol-chloroform extraction. Anal Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  29. Torday, J. S. and Rehan, V. K. (2000) Stretchstimulated surfactant phospholipid synthesis is mediated by the coordinated paracrine actions of parathyroid hormone-related protein and leptin. Am. J. Physiol. Lung Cell Mol. Physiol. 283, L130-L135.

    Google Scholar 

  30. Torday, J., Hua, J., and Slavin, R. (1995) Metabolism and feta of neutral lipids of fetal lung fibroblast origin. Biochim. Biophys. Acta 1254, 198–206.

    PubMed  Google Scholar 

  31. Mendelson, C. R. (2000) Endocrinology of the Lung. Humana, Totowa, NJ.

    Google Scholar 

  32. Rubin, L. P., Sanchez-Esteban, J., Chinoy, M., Qin, J., and Torday, J. S. Transduction of mechanical signals by parathyroid hormone-related protein promotes pulmonary alveolar differentiation. J. Appl Physiol., in press.

  33. Rubin, L. P., Kifor, O., Hua, J., Brown, E. M., and Torday, J. S. (1994) Parathyroid hormone (PTH) and PTH-related protein stimulate surfactant phospholipid synthesis in rat fetal lung, apparently by a mesenchymal-epithelial mechanism. Biochim. Biophys. Acta. 1223, 91–100.

    Article  PubMed  CAS  Google Scholar 

  34. Rubin, L. P. and Torday, J. S. (2000) Parathyroid hormone-related Protein (PTHrP) biology in fetal lung development, in Endocrinology of the Lung. Humana, Totowa, NJ, pp. 269–297.

    Chapter  Google Scholar 

  35. Londos, C., Brasaemle, D. L., Schultz, C. J., Segrest, J. P., and Kimmel, A. R. (1999) Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin. Cell. Dev. Biol. 10, 51–58.

    Article  PubMed  CAS  Google Scholar 

  36. Schultz, C. J., Londos, C., Sun, H., Torres, E., and Torday, J. S. (2002) Role of adipocyte differentiation-related protein in surfactant phospholipid synthesis by type II cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 283, L288-L296.

    PubMed  CAS  Google Scholar 

  37. Gille J. J. and Joenje, H. (1992) Cell culture models for oxidative stress: superoxide and hydrogen peroxide versus normobaric oxygen. Mutat. Res. 275, 405–414.

    PubMed  CAS  Google Scholar 

  38. Hashimoto, S., Gon, Y., Takeshita, I., Matsumoto, K., Maruoka, S., and Horie, T. (2001) Transforming growth factor—β1 induces phenotypic modulation of human lung fibroblasts to myofibroblast through a c-Jun-NH2-terminal kinase-dependent pathway. Am. J. Respir. Crit. Care. 163, 152–157.

    CAS  Google Scholar 

  39. Gao, J. and Serrero, G. (1999) Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake. J. Biol. Chem. 274, 16825–16830.

    Article  PubMed  CAS  Google Scholar 

  40. Dooley, S., Delvoux, B., Lahme, B., Mangasser-Stephan, K., and Gressner, A. M. (2000) Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology 31, 1094–1106.

    Article  PubMed  CAS  Google Scholar 

  41. Shimizu, E., Kobayashi, Y., Oki, Y., Kawasaki, T., Yoshimi, T., and Nakamura, H. (1999) OPC-13013 a cyclic nucleotide phosphodiesterase type III, inhibitor, inhibits cell proliferation and transdifferentiation of cultured rat hepatic stellate cells. Life Sci. 64, 2081–2088.

    Article  PubMed  CAS  Google Scholar 

  42. Potter, J. J., Rennie-Tankersley, L., Anania, F. A., and Mezey, E. (1999) A transient increase in c-mycprecedes the transdifferentiation of hepatic stellate cells to myofibroblast-like cells. Liver 19, 135–144.

    Article  PubMed  CAS  Google Scholar 

  43. Weber, K. T. (1997) Fibrosis, a common pathway to organ failure: angiotensin II and tissue repair. Semin. Nephrol. 17, 467–491.

    PubMed  CAS  Google Scholar 

  44. Tang, W. W., Van, G. Y., and Qi, M. (1997) Myofibroblast and alpha 1 (III) collagen expression in experimental tubulointerstitial nephritis. Kidney Int. 51, 926–931.

    Article  PubMed  CAS  Google Scholar 

  45. Marra, F., Efsen, E., Romanelli, R. G., et al. (2000) Ligands of peroxisome proliferator-activated receptor gamma modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology. 119, 466–478.

    Article  PubMed  CAS  Google Scholar 

  46. Galli, A., Crabb, D., Price, D., et al. (2000) Peroxisome proliferator-activated receptor gamma transcriptional regulation is involved in platelet-derived growth factor-induced proliferation of human hepatic stellate cells. Hepatology. 31, 101–108.

    Article  PubMed  CAS  Google Scholar 

  47. Heath, V. J., Gillespie, D. A., and Crough, D. H. (2000) Inhibition of the terminal stages of adipocyte differentiation by cMyc. Exp. Cell. Res. 254, 91–98.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Rehan.

Additional information

Supported in part by American Heart Association grant (no. 0265127Y) to V.K.R. and National Institutes of Health grant (HL 55268) to J.S.T. and V.K.R.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehan, V.K., Torday, J.S. Hyperoxia augments pulmonary lipofibroblast-to-myofibroblast transdifferentiation. Cell Biochem Biophys 38, 239–249 (2003). https://doi.org/10.1385/CBB:38:3:239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:38:3:239

Index Entries

Navigation