Skip to main content
Log in

Mechanism of action of moderate-intensity static magnetic fields on biological systems

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

There is substantial evidence indicating that moderate-intensity static magnetic fields (SMF) are capable of influencing a number of biological systems, particularly those whose function is closely linked to the properties of membrane channels. Most of the reported moderate SMF effects may be explained on the basis of alterations in membrane calcium ion flux. The mechanism suggested to explain these effects is based on the diamagnetic anisitropic properties of membrane phospholipids. It is proposed that reorientation of these molecules during moderate SMF exposure will result in the deformation of imbedded ion channels, thereby altering their activation kinetics. Channel inactivation would not be expected to be influenced by these fields because this mechanism is not located within the intramembraneous portion of the channel. Patch-clamp studies of calcium channels have provided support for this hypothesis, as well as demonstrating a temperature dependency that is understandable on the basis of the membrane thermotropic phase transition. Additional studies have demonstrated that sodium channels are similarly affected by SMFs, although to a lesser degree. These findings support the view that moderate SMF effects on biological membranes represent a general phenomenon, with some channels being more susceptible than others to membrane deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Denegre, J. M., Valles, J. M., Jr., Lin, K., Jordan, W. B., and Mowry, K. L. (1998) Cleavage planes in frog eggs altered by strong magnetic fields. Proc. Natl. Acad. Sci. USA 95, 14729–14732.

    Article  PubMed  CAS  Google Scholar 

  2. Kale, P. G. and Baum, J. W. (1979) Genetic effects of strong magnetic fields in Drosophila melanogaster; homogeneous fields ranging from 13,000 to 37,000 gauss. Environ. Mutagen. 1, 371–374.

    Article  PubMed  CAS  Google Scholar 

  3. Beischer, D. E. and Knepton, J. C. The electroencephalogram of the squirrel monkey (Saimiri sciureus) in a very high magnetic field, in NAMI Rep. 972. Naval Aerospace Medical Institute, Pensacola, FL, 1966.

    Google Scholar 

  4. Thach, J. S. A behavioral effect of intense dc electromagnetic fields, in Use of Nonhuman Primates in Drug Evaluation (Vagthorg, H., ed.). Univ. of Texas Press, Austin, pp. 347–356, 1968.

    Google Scholar 

  5. Barnothy, J. M., Barnothy, M. F. and Boszormenyi-Nagy, I. (1956) Influence of a magnetic field upon the leukocytes of the mouse. Nature (London) 181, 1785–1786.

    Article  Google Scholar 

  6. Eiselein, B. S., Boutell, H. M., and Biggs, W. (1961) Biological effects of magnetic fields— negative results. Aerosp. Med. 32, 383–386.

    PubMed  CAS  Google Scholar 

  7. Young, W. and Gofman, J. W. Magnetic fields, vagal inhibition and acetylcholinesterase activity, in UCRL Rep. 12389. Lawrence Livermore Laboratory, Livermore, CA, 1965.

    Google Scholar 

  8. Gaffey, C. T. and Tenforde, T. S. (1981). Alterations in the rat electrocardiogram induced by stationary magnetic fields. Biolectromagnetics 2, 357–370.

    Article  CAS  Google Scholar 

  9. Nahas, G. G., Boccalon, H., Berryer, P., and Wagner, B. (1975) Effects in rodents of a one-month exposure to magnetic fields (200–1200 Gauss). Aviat. Space Environ. Med. 46, 1161–1163.

    PubMed  CAS  Google Scholar 

  10. Strand, J. A., Abernethy, C. S., Skalski, J. R., and Genoway, R. G. (1983) Effects of magnetic field exposure on fertilization success in rainbow trout, Salmo gairdneri. Bioelectromagnetics 4, 295–301.

    Article  PubMed  CAS  Google Scholar 

  11. Brewer, H. B. (1979) Some preliminary studies on the effects of a static magnetic field on the life cycle of Lebistes reticulates (guppy). Biophys. J. 28, 305–314.

    PubMed  CAS  Google Scholar 

  12. Mild, K. H., Sandstrom, M., and Lovtrup, S. (1981) Development of Xenopus embryos in a static magnetic field. Bioelectromagnetics 2, 199–201.

    Article  PubMed  CAS  Google Scholar 

  13. Kholodov, Y. A. Influence of magnetic fields on biological objects. NTIS Rep. JPRS 63038. Natl. Tech. Info. Serv., Springfield, VA, 1974.

    Google Scholar 

  14. Klimovskaya, L. D. and Smirnova, N. P. (1976) Changes in brain evoked potentials under the influence of a permanent magnet field. Bull. Exp. Biol. Med. 82, 1125–1129.

    Article  Google Scholar 

  15. Rosen, A. D. and Lubowsky, J. (1987) Magnetic field influence on central nervous system function. Exp. Neurol. 95, 679–687.

    Article  PubMed  CAS  Google Scholar 

  16. Nakagawa, M. and Matsuda, Y. (1988) A strong static magnetic field alters operant responding in rats. Bioelectromagnetics 9, 25–37.

    Article  PubMed  CAS  Google Scholar 

  17. Hong, C., Huestis, P., Thompson, R., and Yu, J. (1988) Learning ability of young rats in unaffected by repeated exposure to a static electromagnetic field in early life. Bioelectromagnetics 9, 269–273.

    Article  PubMed  CAS  Google Scholar 

  18. Azanza, M. J. and Del Moral, A. (1984) Cell membrane biochemistry and neurobiological approach to biomagnetism. Prog. Neurobiol. 44, 517–601.

    Article  Google Scholar 

  19. Roberts, A. M. (1970) Motion of Paramecium in static electric and magnetic fields. J. Theor. Biol. 27, 97–106.

    Article  PubMed  CAS  Google Scholar 

  20. Rosen, M. S. and Rosen, A. D. (1990) Magnetic field influence on Paramecium motility. Life Sci. 46, 1509–1515.

    Article  PubMed  CAS  Google Scholar 

  21. Eckert, R. (1972) Bioelectric control of ciliary activity. Science 176, 473–481.

    Article  PubMed  CAS  Google Scholar 

  22. Browning, J. L., Nelson, D. D., and Hasma, H. G. (1976) Ca2+ influx across the excitable membrane of behavioral mutants of Paramecium. Nature 259, 491–494.

    Article  PubMed  CAS  Google Scholar 

  23. Rosen, A. D. and Vastola, E. F. (1966) Unit signs of visual cortex modulation by the lateral geniculate body. EEG Clin. Neurophys. 20, 38–43.

    Article  CAS  Google Scholar 

  24. Rosen, A. D. and Lubowsky, J. (1990) Modification of spontaneous unit discharge in the lateral geniculate body by a magnetic field. Exp. Neurol. 108, 261–265.

    Article  PubMed  CAS  Google Scholar 

  25. Wikswo, J. P. and Barach, J. P. (1980) An estimate of the steady magnetic field strength required to influence nerve conduction. IEEE Trans. Biomed. Eng. 27, 722–724.

    Article  PubMed  CAS  Google Scholar 

  26. Katz, B. and Miledi, R. (1965) The effect of calcium on acetylcholine release from motor nerve terminals. Proc. R. Soc. Lond. B. 161, 496–503.

    PubMed  CAS  Google Scholar 

  27. Rosen, A. D. (1992) Magnetic field influence on acetylcholine release at the neuromuscular junction. Am. J. Physiol. (Cell Physiol. 31) 262, C1418-C1422.

    CAS  Google Scholar 

  28. Rosen, A. D. (1992) Membrane response to static magnetic fields: Effect of exposure duration. Biochim. Biophys. Acta 1148, 317–320.

    Google Scholar 

  29. Rosen, A. D. (1994) Threshold and limits of magnetic field action at the presynaptic membrane. Biochim. Biophys. Acta 1193, 62–66.

    Article  PubMed  CAS  Google Scholar 

  30. Rosen, A. D. (1996) Inhibition of calcium channel activation in GH3 cells by static magnetic fields. Biochim. Biophys. Acta 1282, 149–155.

    Article  PubMed  Google Scholar 

  31. Matteson, D. R. and Armstrong, C. M. (1986) Properties of two types of calcium channels in clonal pituitary cells. J. Gen. Physiol. 87, 161–182.

    Article  PubMed  CAS  Google Scholar 

  32. Matteson, D. R. and Armstrong, C. M. (1984) Na and Ca channels in a transformed line of anterior pituitary cells. J. Gen. Physiol. 83, 371–394.

    Article  PubMed  CAS  Google Scholar 

  33. Rosen, A. D. (2003) Effect of a 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells. Bioelectromagnetics, in press.

  34. Worcester, D. L. (1978) Structural origins of diamagnetic anisotropy in proteins. Proc. Natl. Acad. Sci. USA 75, 5475–5477.

    Article  PubMed  CAS  Google Scholar 

  35. Vassilev, P. M., Dronzine, R. T., Vassileva, M. P., and Georgiev, G. A. (1982) Parallel arrays of microtubules formed in electric and magnetic fields. Biosci. Rep. 2, 1025–1029.

    Article  PubMed  CAS  Google Scholar 

  36. Bras, W., Diakun, G. P., Diaz, J. F., Maret, G., Kramer, H., Bordas, J., and Medrano, F. J. (1998) The susceptibility of pure tubulin to high magnetic fields: A magnetic birefringence and X-ray fiber diffraction study. Biophys. J. 74, 1509–1521.

    PubMed  CAS  Google Scholar 

  37. Valles, J. M., Jr. (2002) Model of magnetic field-induced mitotic apparatus reorientation in frog eggs. Biophys. J. 82, 1260–1265.

    PubMed  CAS  Google Scholar 

  38. Maret, G. and Dransfeld, K. (1977) Macromolecules and membranes in high magnetic fields. Physica 86B, 1077–1083.

    Google Scholar 

  39. Hong, F. T., Mauzerall, D., and Mauro, A. (1971) Magnetic anisotropy and the orientation of retinal rods in a homogeneous magnetic field. Proc. Natl. Acad. Sci. USA 68, 1283–1285.

    Article  PubMed  CAS  Google Scholar 

  40. Geacintov, N. E., Van Norstrand, F., Pope, M., and Tinkel, J. B. (1971) Magnetic field effect on the chlorophyll fluorescence in Chlorella. Biochim. Biophys. Acta 226, 486–491.

    Article  PubMed  CAS  Google Scholar 

  41. Boroske, E., and Helfrich, W. (1978) Magnetic anisotropy of egg lecithin membranes. Biophys. J. 24, 863–868.

    PubMed  CAS  Google Scholar 

  42. Speyer, J. B., Sripada, P. K., Das Gupta, S. K., and Shipley, G. G. (1987) Magnetic orientation of sphingomyelin-lecithin bilayers. Biophys. J. 51, 687–691.

    Article  PubMed  CAS  Google Scholar 

  43. Tenforde, T. S. (1988) Magnetic deformation of phospholipid bilayers: Effects of liposome shape and solute permeability at prephase transition temperature. J. Theor. Biol. 133, 385–396.

    Article  CAS  Google Scholar 

  44. Carraway, K. L. and Carraway, C. A. C. (1989) Membrane-cytoskeleton interactions in animal cells. Biochim. Biophys. Acta 988, 147–171.

    PubMed  CAS  Google Scholar 

  45. Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y., Takeshima, H., Narumiya, S. and Numa, S. (1989) Primary structure and functional expression in the cardiac dihydropyridine-sensitive calcium channel. Nature 340, 230–233.

    Article  PubMed  CAS  Google Scholar 

  46. Perez-Reyes, E., Wei, X., Castellano, A., and Birnbaumer, L. (1990) Molecular diversity of L-type calcium channels. J. Biol. Chem. 265, 20430–20436.

    PubMed  CAS  Google Scholar 

  47. Soong, T. W., Stea, A., Hodson, C. D., Dubel, S. J., Vincent, S. R., and Snutch, T. P. (1993) Structure and functional expression in a member of the low voltage-activated calcium channel family. Science 260, 1133–1136.

    Article  PubMed  CAS  Google Scholar 

  48. Obejero-Paz, C. A., Jones, S. W., and Scarpa, A. (1991) Calcium currents in the A7r5 smooth muscle-derived cell line. Increase in current and selective removal of voltage-dependent inactivation by intracellular trypsin. J. Gen. Physiol. 98, 1127–1140.

    Article  PubMed  CAS  Google Scholar 

  49. Armstrong, C. M. and Bezanilla, F. (1977) Inactivation of the sodium channel. II. Gating current experiments. J. Gen Physiol. 70, 567–590.

    Article  PubMed  CAS  Google Scholar 

  50. Yue, D. T., Backx, P. H., and Imredy, J. P. (1990) Calcium-sensitive inactivation in the gating of single calcium channels. Science 250, 1735–1738.

    Article  PubMed  CAS  Google Scholar 

  51. Welling, A., Bosse, E., Caualie, A., Bottlender, R., Ludwig, A., Nastainczyk, W., Flockerzi, V., and Hoffmann, F. (1993) Stable co-expression of calcium channel α1, β β, and α1/δ subunits in a somatic cell line. J. Physiol. 471, 749–765.

    PubMed  CAS  Google Scholar 

  52. McElhaney, R. N. (1986) Differential scanning calorimetric studies of lipid-protein interaction in model membrane systems. Biochim. Biophys. Acta 864, 361–421.

    PubMed  CAS  Google Scholar 

  53. Unwin, N. (1995) Acetylcholine receptor-channel imaged in the open state. Nature 373, 37–43.

    Article  PubMed  CAS  Google Scholar 

  54. Wilson, G. G. and Karlin, A. (1998) The location of the gate in the acetylcholine receptor channel. Neuron 20, 1269–1281.

    Article  PubMed  CAS  Google Scholar 

  55. Steiner, U. E. and Ulrich, T. (1989) Magnetic field effects in chemical reactions and related phenomena. Chem. Rev. 89, 51–147.

    Article  CAS  Google Scholar 

  56. Tenforde, T. S. (1985) Mechanisms for the biological effects of magnetic fields. In Biological Effects and Dosimetry of Static Magnetic Fields and ELF Electromagnetic Fields. (Grandolfo, M., Michaelson, S. M., and Rindi, A. V., eds.). Plenum Press, New York pp. 71–92.

    Google Scholar 

  57. De Certaines, J. D. (1992) Molecular and cellular responses to orientation effects in static and homogeneous ultra high magnetic fields. Ann. NY Acad. Sci. 649, 35–43.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur D. Rosen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosen, A.D. Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem Biophys 39, 163–173 (2003). https://doi.org/10.1385/CBB:39:2:163

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:39:2:163

Index Entries

Navigation