Skip to main content
Log in

Lipid phase behavior and stabilization of domains in membranes of platelets

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Lipid domains are acquiring increasing importance in our understanding of the regulation of several key functions in living cells. We present here a discussion of the physical mechanisms driving the phase separation of membrane lipid components that make up these domains, including phase behavior of the lipids and the role of cholesterol. In addition, we discuss phenomena that regulate domain geometry and dimensions. We present evidence that these mechanisms apply to the regulation of domains in intact cells. For example, the observation that physiologically functional microdomains present at 37°C aggregate into macrodomains in human blood platelets when they are chilled below membrane lipid phase transition temperatures is predictable from the known behavior of the constituent lipids in vitro. Finally, we show that the principles developed from studies on these lipids in model systems can be used to develop techniques to stabilize the physiological, resting microdomain structure of platelets during freeze-drying. These latter findings have immediate applications in clinical medicine for the development of methods for storing platelets for therapeutic use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown, D. A. (2001) Seeing is believing: visualization of rafts in model membranes. Proc Nat. Acad. Sci. 98, 10517–10518.

    PubMed  CAS  Google Scholar 

  2. Brown, D. A. and London, E. (1998) Structure and origin of ordered lipid domains in biological membranes. J. Mem. Biol. 164, 103–114.

    CAS  Google Scholar 

  3. Brown, D. A. and London, E. (2000) Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J. Biol. Chem. 275 17221–17224.

    PubMed  CAS  Google Scholar 

  4. Edidin, M. (1997) Lipid microdomains in cell surface membranes. Curr. Opin. Struct. Biol. 7, 528–532.

    PubMed  CAS  Google Scholar 

  5. Galbiati, F., Razani, B., and Lisanti, M. P. (2001) Emerging themes in lipid rafts and caveolae. Cell 106, 403–411.

    PubMed  CAS  Google Scholar 

  6. Jacobson, K. and Dietrich, C. (1999) Looking at lipid rafts? Trends Cell Biol. 9, 87–91.

    PubMed  CAS  Google Scholar 

  7. Kenworthy, A. (2002) Peering inside lipid rafts and caveolae. Trends Biochem. Sci. 27, 435–438.

    PubMed  CAS  Google Scholar 

  8. London, E. (2002) Insights into lipid raft structure and formation from experiments in model membranes. Curr. Opinion Struct. Biol. 12, 480–486.

    CAS  Google Scholar 

  9. Simons, K. and Ikonen, E. (2000) How cells handle cholesterol. Science 290, 1721–1726.

    PubMed  CAS  Google Scholar 

  10. Heerklotz, H. (2002) Triton promotes domain formation in lipid raft mixtures. Biophys. J. 83, 2693–2701.

    PubMed  CAS  Google Scholar 

  11. Horejsi, V. (2002) Membrane rafts in immunoreceptor signaling: new doubts, new proofs? Trends Immunol. 23, 562–564.

    PubMed  CAS  Google Scholar 

  12. Draber, P. and Draberova, L. (2002) Lipid rafts in mast cell signaling. Mol. Immunol. 38, 1247–1252.

    PubMed  CAS  Google Scholar 

  13. Kunzelmann-Marche, C., Freyssinet, J.-M., and Martinez, M. C. (2002) Loss of plasma membrane phospholipid asymmetry requires raft integrity. Role of transient receptor potential channels and ERK pathway. J. Biol. Chem. 277, 19876–19881.

    PubMed  CAS  Google Scholar 

  14. Slimane, T. A. and Hoekstra, D. (2002) Sphingolipid trafficking and protein sorting in epithelial cells. FEBS Lett. 529, 54–59.

    Google Scholar 

  15. Simons, K. and Gruenberg, J. (2000) Jamming the endosomal storage system: lipid rafts and lysosomal storage disease. Trends Cell Biol. 10, 459–462.

    PubMed  CAS  Google Scholar 

  16. Mukherjee, S. and Maxfield, F. R. (2000) Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 1, 203–211.

    PubMed  CAS  Google Scholar 

  17. Harris, T. J. C. and Siu, C-H. (2002) Reciprocal raft-receptor interactions and the assembly of adhesion complexes. Bioessays 24, 996–1003.

    PubMed  CAS  Google Scholar 

  18. Ikonen, E. (2001) Roles of lipid rafts in membrane transport. Curr. Op. Cell Biol. 13, 470–477.

    PubMed  CAS  Google Scholar 

  19. Anderson, R. G. W. and Jacobson, K. (2002) A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821–1825.

    PubMed  CAS  Google Scholar 

  20. Duncan, M. J., Shin, J-S. and Abraham, S. N. (2002) Microbial entry through caveolae: variations on a theme. Cell. Microbiol. 4, 783–791.

    PubMed  CAS  Google Scholar 

  21. Simons, K. and Ehehalt, R. (2002) Cholesterol, lipid rafts, and disease. J. Clin. Invest. 110, 597–603.

    PubMed  CAS  Google Scholar 

  22. Kakio, A., Nishimoto, S-I., Yanagisawa, K., Kozutsumi, Y., and Matsuzaki, K. (2002) Interactions of amyloid beta-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry 41, 7385–7390

    PubMed  CAS  Google Scholar 

  23. Nisole, S., Krust, B., and Hovanessian, A. G. (2002) Anchorage of HIV on permissive cells leads to coaggregation of viral particles with surface nucleolin at membrane raft microdomains. Exp. Cell Res. 276, 155–173.

    PubMed  CAS  Google Scholar 

  24. Zhuang, L., Lin, J., Lu, M. L., Solomon, K. R., and Freeman, M. (2002) Cholesterol-rich lipid rafts mediate Akt-regulated survival in prostate cancer cells. Cancer Res. 62, 2227–2231.

    PubMed  CAS  Google Scholar 

  25. Scheel-Toellner, D., Wang, K., Singh, R., Majeed, S., Raza, K., Curnow, S. J., et al. (2002) The death-inducing signalling complex is recruited to lipid rafts in Fas-induced apoptosis. Biochem. Biophys. Res. Comm. 297, 876–879.

    PubMed  CAS  Google Scholar 

  26. Hueber, A-O. Bernard, A-M., Herincs, Z., Couzinet, A., and He, H-T. (2002) An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Reports 3, 190–196.

    PubMed  CAS  Google Scholar 

  27. Sanghera, N. and Pinheiro, T. (2002) Binding of prion protein to lipid membranes and implications for prion conversion. J. Mol. Biol. 315, 1241–1256.

    PubMed  CAS  Google Scholar 

  28. Gousset, K., Wolkers, W. F., Tsvetkova, N. M., Oliver, A. E., Field, C. L., Walker, N. J., et al. (2002) Evidence for a physiological role for membrane rafts in human platelets. J. Cell Physiol. 19, 117–128.

    Google Scholar 

  29. Luria, A., Vegelyte-Avery, V., Stith, B., Tsvetkova, N. M., Wolkers, W. F., Crowe, J. H., et al. (2002) Detergent-free domain isolated from Xenopus egg plasma membrane with properties similar to those of detergent-resistant membranes. Biochemistry 41, 13189–13197.

    PubMed  CAS  Google Scholar 

  30. Tablin, F., Wolkers, W. F., Walker, N. J., Oliver, A. E., Tsvetkova, N. M., Gousset, K., et al. (2001) Membrane reorganization during chilling: implications for long-term stabilization of platelets. Cryobiology 43, 114–123.

    PubMed  CAS  Google Scholar 

  31. Parton, R. G., Molero, J. C., Floetenmeyer, M., Green, K. M., and James, D. E. (2002) Characterization of a distinct plasma membrane macrodomain in differentiated adipocytes. J. Biol. Chem. 277, 46769–46778.

    PubMed  CAS  Google Scholar 

  32. Rietveld, A. and Simons, K. (1998) The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim. Biophys. Acta 1376, 467–479.

    PubMed  CAS  Google Scholar 

  33. Koynova, R. and Caffrey, M. (1998) Phases and phase transitions of phosphatidylcholines. Biochim. Biophys. Acta 137, 91–145.

    Google Scholar 

  34. Clerc, S. G. and Thompson, T. E. (1995) Permeability of dimyristoyl phosphatidylcholine/dipalmitoyl phosphatidylcholine bilayer membranes with coexisting gel and liquid-crystalline phases. Biophys. J. 68, 2333–2341.

    PubMed  CAS  Google Scholar 

  35. Chapman, D. (1975) Phase transitions and fluidity characteristics of lipids and cell membranes. Q. Rev. Biophys. 8, 185–235.

    PubMed  CAS  Google Scholar 

  36. Mabrey, S. and Sturtevant, J. M. (1976) Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proc. Nat. Acad. Sci. 73, 3862–3866.

    PubMed  CAS  Google Scholar 

  37. Mabrey, S., Mateo, P. L., and Sturtevant, J. M. (1978) High-sensitivity scanning calorimetric study of mixtures of cholesterol with dimyristoyl- and dipalmitoylphosphatidylcholines. Biochemistry 17, 2464–2468.

    PubMed  CAS  Google Scholar 

  38. McMullen, T. P., Lewis, R. N., and McElhaney, R. N. (2000) Differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes. Biophys. J. 79, 2056–2065.

    Article  PubMed  CAS  Google Scholar 

  39. Silvius, J. R., del Giudice, D., and Lafleur, M. (1996) Cholesterol at different bilayer concentrations can promote or antagonize lateral segregation of phospholipids of differing acyl chain length. Biochemistry 35, 15198–15208.

    PubMed  CAS  Google Scholar 

  40. Mendelsohn, R., and Moore, D. J. (1998) Vibrational spectroscopic studies of lipid domains in biomembranes and model systems. Chem. Phys. Lipids 96, 141–157.

    PubMed  CAS  Google Scholar 

  41. Chen, H., Mendelsohn, R., Rerek, M. E., and Moore, D. J. (2001) Effect of cholesterol on miscibility and phase behavior in binary mixtures with synthetic ceramide 2 and octadecanoic acid. Infrared studies. Biochim. Biophys. Acta 1512, 345–356.

    PubMed  CAS  Google Scholar 

  42. Thewalt, J. L., and Bloom, M. (1992) Phosphatidylcholine:cholesterol phase diagrams. Biophys. J. 63, 1176–1181.

    CAS  PubMed  Google Scholar 

  43. Sankaram, M. B., and Thompson, T. E. (1991) Cholesterol-induced fluid-phase immiscibility in membranes. Proc. Natl. Acad. Sci. 8, 8686–8690.

    Google Scholar 

  44. Mouritsen, O. G., and Jorgensen, K. (1994) Dynamical order and disorder in lipid bilayers. Chem. Phys. Lipids 73, 3–25.

    PubMed  CAS  Google Scholar 

  45. Sugar, I. P., Michonova-Alexova, E., and Chong, P. L. (2001) Geometrical properties of gel and fluid clusters in DMPC/DSPC bilayers: Monte Carlo simulation approach using a two-state model. Biophys. J. 8, 2425–2441.

    Google Scholar 

  46. Saxton, M. J. (1995) Single-particle tracking: effect of corrals. Biophys. J. 69, 389–398.

    PubMed  CAS  Google Scholar 

  47. Saxton, M. J. (1996) Anomalous diffusion due to binding: a Monte Carlo study. Biophys. J. 70, 1250–1262.

    PubMed  CAS  Google Scholar 

  48. Saxton, M. J. (1997) Single-particle tracking: the distribution of diffusion coefficients. Biophys. J. 72, 1744–1753.

    Article  PubMed  CAS  Google Scholar 

  49. Gil, T., Ipsen, J. H., Mouritsen, O. G., Sabra, M. C., Sperotto, M. M., and Zuckermann, M. J. (1998) Theoretical analysis of protein organization in lipid membranes. Biochim. Biophys. Acta 1376, 245–266.

    PubMed  CAS  Google Scholar 

  50. Killian, J. A. (1998) Hydrophobic mismatch between proteins and lipids in membranes. Biochim. Biophys. Acta. 137, 401–416.

    Google Scholar 

  51. Le Bihan, T., and Pezolet, M. (1998) Study of the structure and phase behavior of dipalmitoylphosphatidylcholine by infrared spectroscopy: characterization of the pretransition and substransition. Chem. Phys. Lipids 94, 13–33.

    Google Scholar 

  52. Pedersen, S., Jorgensen, K., Baekmark, T. R., and Mouritsen, O. G. (1996) Indirect evidence for lipid-domain formation in the transition region of phospholipid bilayers by two-probe fluorescence energy transfer. Biophys. J. 71, 554–560.

    PubMed  CAS  Google Scholar 

  53. Korlach, J., Schwille, P., Webb, W. W., and Feigenson, G. W. (1999) Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Nat. Acad. Sci. 96, 8461–8466.

    PubMed  CAS  Google Scholar 

  54. Feigenson, G. W., and Buboltz, J. T. (2001) Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys. J. 80, 2775–2788.

    PubMed  CAS  Google Scholar 

  55. Leidy, C., Wolkers, W. F., Jørgensen, K., Mouritsen, O. G., and Crowe, J. H. (2001) Lateral organization and domain formation in two-component lipid membranes. Biophys. J. 80, 1819–1828.

    Article  PubMed  CAS  Google Scholar 

  56. Bagatolli, L. A. and Gratton, E. (2000) A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: a two-photon fluorescence microscopy study. Biophys. J. 79, 434–447.

    PubMed  CAS  Google Scholar 

  57. Nag, K., Pao, J.-S., Harbottle, R. R., Possmayer, F., Petersen, N. O., and Bagatolli, L. A. (2002) Segregation of saturated chain lipids in pulmonary surfactant films and bilayers. Biophys. J. 82, 2041–2051.

    PubMed  CAS  Google Scholar 

  58. McConnell, H. M. (1991) Structure and transitions in lipid monolayers at the air-water interface. Ann. Rev. Phys. Chem. 42, 171–195.

    CAS  Google Scholar 

  59. Hunter, R. J., White, L. R., and Chan, D. Y. C. (1995) Foundations of Colloid Science, Oxford University, Oxford, UK.

    Google Scholar 

  60. Leidy, C., Kaasgaard, T., Crowe, J. H., Mouritsen, O. G., and Jorgensen, K. (2002) Ripples and the formation of anisotropic lipid domains: imaging two-component supported double bilayers by atomic force microscopy. Biophys. J. 83, 2625–2633.

    PubMed  CAS  Google Scholar 

  61. Slotte, J. P. (1995) Lateral domain formation in mixed monolayers containing cholesterol and dipalmitoylphosphatidylcholine or N-palmitoylsphingomyelin. Biochim. Biophys. Acta., 1235, 419–427.

    PubMed  Google Scholar 

  62. Hoyrup, P., Mouritsen, O. G., and Jorgensen, K. (2001) Phospholipase A2 activity towards vesicles of DPPC and DMPC-DSPC containing small amounts of SMPC. Biochim. Biophys. Acta 1515, 133–143.

    PubMed  CAS  Google Scholar 

  63. Nagle, J. F., and Tristram-Nagle, S. (2000) Structure of lipid bilayers. Biochim. Biophys. Acta 1469, 159–195.

    PubMed  CAS  Google Scholar 

  64. Nagle, J. F., and Tristram-Nagle, S. (2000) Lipid bilayer structure. Curr. Opin. Struct. Biol. 10, 474–480.

    PubMed  CAS  Google Scholar 

  65. Katsaras, J., Tristram-Nagle, S., Liu, Y., Headrick, R. L., Fontes, E., Mason, P. C., and Nagle, J. F. (2000) Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples. Phys. Rev. 61, 5668–5677.

    CAS  Google Scholar 

  66. Copeland, B. R., and McConnell, H. M. (1980) The rippled structure in bilayer membranes of phosphatidylcholine and binary mixtures of phosphatidylcholine and cholesterol. Biochim. Biophys. Acta 59, 95–109.

    Google Scholar 

  67. Meyer, H. W. (1996) Pretransition-ripples in bilayers of dipalmitoylphosphatidylcholine: undulation or periodic segments? A freeze-fracture study. Biochim. Biophys. Acta 1302, 138–144.

    PubMed  Google Scholar 

  68. Meyer, H. W., Bunjes, H., and Ulrich, A. S. (1999) Morphological transitions of brain sphingomyelin are determined by the hydration protocol: ripples re-arrange in plane, and sponge-like networks disintegrate into small vesicles. Chem. Phys. Lipids. 99, 111–123.

    PubMed  CAS  Google Scholar 

  69. Meyer, H. W., Dobner, B., and Semmler, K. (1996) Macroripple-structures induced by different branched-chain phosphatidylcholines in bilayers of dipalmitoylphosphatidylcholine. Chem. Phys. Lipids 82, 179–189.

    CAS  Google Scholar 

  70. Meyer, H. W. and Richter, W. (2001) Freeze-fracture studies on lipids and membranes. Micron 32, 615–644.

    PubMed  CAS  Google Scholar 

  71. Janiak, M. J., Small, D. M., and Shipley, G. G. (1976) Nature of the thermal pretransition of synthetic phospholipids: dimyristolyl-and dipalmitoyllecithin. Biochemistry 15, 4575–4580.

    PubMed  CAS  Google Scholar 

  72. Janiak, M. J., Small, D. M., and Shipley, G. G. (1979) Temperature and compositional dependence of the structure of hydrated dimyristoyl lecithin. J. Biol. Chem. 254, 6068–6078.

    PubMed  CAS  Google Scholar 

  73. Luna, E. J., and McConnell, H. M. (1977) The intermediate monoclinic phase of phosphatidylcholines. Biochim. Biophys. Acta 466, 381–392.

    PubMed  CAS  Google Scholar 

  74. Ververgaert, P. H., Verkleij, A. J., Elbers, P. F., and van Deenen, L. L. (1973) Analysis of the crystal-lization process in lecithin liposomes: a freezeetch study. Biochim. Biophys. Acta 311, 320–329.

    PubMed  CAS  Google Scholar 

  75. Heimburg, T. (2000) A model for the lipid pretransition: coupling of ripple formation with the chain-melting transition. Biophys. J. 78, 1154–1165.

    Article  PubMed  CAS  Google Scholar 

  76. Rappolt, M., Pabst, G., Rapp, G., Kriechbaum, M., Amenitsch, H., Krenn, C., et al. (2000) New evidence for gel-liquid crystalline phase coexistence in the ripple phase of phosphatidyl-cholines. Eur. Biophys. J. 29, 125–133.

    PubMed  CAS  Google Scholar 

  77. Sun, W. J., Tristram-Nagle, S., Suter, R. M., and Nagle, J. F. (1996) Structure of the ripple phase in lecithin bilayers. Proc. Natl. Acad. Sci. 9, 7008–7012.

    Google Scholar 

  78. Katsaras, J., Tristram-Nagle, S., Liu, Y., Headrick, R. L., Fontes, E., Mason, P. C., and Nagle, J. F. (2000) Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples. Phys. Rev. E. 61, 5668–5677.

    CAS  Google Scholar 

  79. Tsuchida, K., and Hatta, I. (1988) ESR studies on the ripple phase in multilamellar phospholipid bilayers. Biochim. Biophys. Acta 945, 73–80.

    PubMed  CAS  Google Scholar 

  80. McMullen, T. P., and McElhaney, R. N. (1997) Differential scanning calorimetric studies of the interaction of cholesterol with distearoyl and dielaidoyl molecular species of phosphatidyl-choline, phosphatidylethanolamine, and phosphatidylserine. Biochemistry 36, 4979–4986.

    PubMed  CAS  Google Scholar 

  81. McMullen, T. P., Lewis, R. N., and McElhaney, R. N. (1993) Differential scanning calorimetric study of the effect of cholesterol on the thermotropic phase behavior of a homologous series of linear saturated phosphatidyl-cholines. Biochemistry 32, 516–522.

    PubMed  CAS  Google Scholar 

  82. Ipsen, J. H., Karlstrom, G., Mouritsen, O. G., Wennerstrom, H., and Zuckermann, M. J. (1987) Phase equilibria in the phosphatidyl-choline-cholesterol system. Biochim. Biophys. Acta 905, 162–172.

    PubMed  CAS  Google Scholar 

  83. Ipsen, J. H., Mouritsen, O. G., and Zuckermann, M. J. (1989) Theory of thermal anomalies in the specific heat of lipid bilayers containing cholesterol. Biophys. J. 56, 661–667.

    Article  PubMed  CAS  Google Scholar 

  84. Vist, M. R., and Davis, J. H. (1990) Phase equilibria of cholesterol/dipalmitoylphosphatidyl-choline mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry 29, 451–464.

    PubMed  CAS  Google Scholar 

  85. Richter, F., Rapp, G., and Finegold, L. (2001) Miscibility gap in fluid dimyristoylphos-phatidylcholine: cholesterol as “seen” by x rays. Phys. Rev. E 6305, art. no. 051914 Part 1.

  86. Pare, C., and Lafleur, M. (1998) Polymorphism of POPE/cholesterol system: a 2H nuclear magnetic resonance and infrared spectroscopic investigation. Biophys. J. 74, 899–909.

    PubMed  CAS  Google Scholar 

  87. Wang, T-Y., and Silvius, J. R. (2001) Cholesterol does not induce segregation of liquid-ordered domains in bilayers modeling the inner leaflet of the plasma membrane. Biophys. J. 81, 2762–2773.

    PubMed  CAS  Google Scholar 

  88. Wang, T.-Y., and Silvius, J. R. (2003) Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers. Biophys. J. 84, 367–378.

    PubMed  CAS  Google Scholar 

  89. Brown, D. A., and London, E. (1997) Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes?. Biochem. Biophys. Res. Commun. 240, 1–7.

    PubMed  CAS  Google Scholar 

  90. Liu, P., and Anderson, R. G. (1995) Compartmentalized production of ceramide at the cell surface. J. Biol. Chem. 270, 27179–27185.

    PubMed  CAS  Google Scholar 

  91. Carrer, D. C., and Maggio, B. (1999) Phase behavior and molecular interactions in mixtures of ceramide with dipalmitoylphsphatidylcholine. J. Lipid Res. 40, 1978–1989.

    PubMed  CAS  Google Scholar 

  92. Holopainen, J. M., Lemmich, J., Richter, F., Mouritsen, O. G., Rapp, G., and Kinnunen, P. (2000) Dimyristoylphosphatidylcholine/C16:0-ceramide binary liposomes studied by differential scanning calorimetry and wide-and small-angle X-ray scattering. Biophys. J. 78, 2459–2469.

    PubMed  CAS  Google Scholar 

  93. Massey, J. B. (2001) Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers. Biochim. Biophys. Acta 1510, 167–184.

    PubMed  CAS  Google Scholar 

  94. Xu, X., Bittman, R., Duportail, G., Hejssler, D., Vilchezel, C., and London, E. (2001) Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal and disease-associated sterols and comparison of sphingomyelin, cerebrosides and ceramide. J. Biol. Chem. 276, 33540–33546.

    PubMed  CAS  Google Scholar 

  95. Iwabuchi, K., Handa, K., and Hakomori, S. (1998) Separation of signaling domain from caveolin-containing membranes in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling. J. Biol. Chem. 273, 33766–33773.

    PubMed  CAS  Google Scholar 

  96. Chigorno, V., Palestini, P., Sciannamblo, M., Dolo, V., Pavan, A., Tettamanti, G., et al. (2000) Evidence that ganglioside enriched domains are distinct from caveolae in MDCK II and human fibroblast cells in culture. Eur. J. Biochem. 267, 4187–4197.

    PubMed  CAS  Google Scholar 

  97. Gomez-Mouton, C., Abad, J. L., Mira, E., Lacalle, R. A., Gallardo, E., Jimenez-Baranda, S. et al. (2001). Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc. Nat. Acad. Sci. 98, 9642–9647.

    PubMed  CAS  Google Scholar 

  98. Leidy, C., Tsvetkova, N. M., Oliver, A. E., Wolkers, W. F., Crowe, L. M., Tablin, F., et al. (2003) Redistribution of cholesterol during cooling in model membranes: implications for temperature regulation of lipid domains in human blood platelets. Biophys. J. 84, 3045–3051.

    Article  PubMed  Google Scholar 

  99. Tsvetkova, N. M., Crowe, J. H., Walker, N. J., Crowe, L. M., Oliver, A. E., Wolkers, W. F. et al. (1999) Physical properties of membrane fractions isolated from human platelets: implications for chilling induced platelet activation. Mol. Mem. Biol. 16, 265–272.

    CAS  Google Scholar 

  100. Tablin, F., Oliver, A. E., Walker, N. J., Crowe, L. M., and Crowe, J. H. (1996) The membrane phase transition of intact human platelets-correlation with cold-induced activation. J. Cell. Physiol. 168, 305–331.

    PubMed  CAS  Google Scholar 

  101. Tsvetkova, N. M., Walker N. J., Crowe, J. H., Field C. L., Shi, Y., and Tablin, F. (2000) Lipid phase separation correlates with activation in platelets during chilling. Mol. Mem. Biol. 17, 209–218.

    CAS  Google Scholar 

  102. Gousset, K., Tsvetkova, N. M., Crowe, J. H., and Tablin, F. (2004) Important role of raft aggregation in the signaling events of cold-induced platelet activation. Biochim. Biophys. Acta 1660, 7–15.

    PubMed  CAS  Google Scholar 

  103. Wolkers, W. F., Crowe, L. M., Tsvetkova, N. M., Tablin, F., and Crowe, J. H. (2002) In situ assessment of erythrocyte membrane properties during cold storage. Mol. Mem. Biol. 19, 59–65.

    CAS  Google Scholar 

  104. Hao, M., Mukherjee, S., and Maxfield, F. R. (2001) Cholesterol depletion induces large scale domain segregation in living cell membranes. Proc. Nat. Acad. Sci. 98, 13072–13077.

    PubMed  CAS  Google Scholar 

  105. Ahmed, S. N., Brown, D. A., and London, E. (1997) On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36, 10944–10953.

    PubMed  CAS  Google Scholar 

  106. Silvius, J. R., del Giudice, D., and Lafleur, M. (1996) Cholesterol at different bilayer concen trations can promote or antagonize lateral segregation of phospholipids of differing acyl chain length. Biochemistry 35, 15198–15208

    PubMed  CAS  Google Scholar 

  107. Crowe, J. H., Carpenter, J. F., and Crowe, L. M. (1998) The role of vitrification in anhydrobiosis. Ann. Rev. Physiol. 6, 73–103.

    Google Scholar 

  108. Argüelles, J. C. (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch. Microbiol. 174, 217–224.

    PubMed  Google Scholar 

  109. Gimeno-Alcañiz, J. V., Pérez-Ortín, J. E., and Matallana, E. (1999) Differential pattern of trehalose accumulation in wine yeast strains during the microvinification process. Biotechnol. Lett. 21, 271–274.

    Google Scholar 

  110. Mansure, J. J., Panek, A. D., Crowe, L. M., and Crowe, J. H. (1994) Trehalose inhibits ethanol effects on intact yeast cells and liposomes. Biochim. Biophys. Acta 1191, 309–316.

    PubMed  CAS  Google Scholar 

  111. Joo, W. H., Shin, Y. S., Lee, Y., Park, S. M., Jeong, Y. K., Seo, J. Y., et al. (2000) Intracellular changes of trehalose content in toluene tolerant Pseudomonas sp BCNU 171 after exposure to toluene. Biotechnol. Lett. 22, 1021–1024.

    CAS  Google Scholar 

  112. Hoekstra, F. A., Wolkers, W. F., Buitink, J., Golovina, E. A., Crowe, J. H., and Crowe, L. M. (1997) Membrane stabilization in the dry state. Comp. Biochem. Physiol.[A] 117A, 335–341.

    CAS  Google Scholar 

  113. Leyman, B., Van Dijck, P., and Thevelein, J. M. (2001) An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends Plant Sci. 6, 510–513.

    PubMed  CAS  Google Scholar 

  114. Crowe, J. H., Crowe, L. M., Carpenter, J. F., and Aurell Wistrom, C. (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem. J. 242, 1–10.

    PubMed  CAS  Google Scholar 

  115. Crowe, J. H., Crowe, L. M., Oliver, A. E., Tsvetkova, N. M., Wolkers, W. F., and Tablin, F. (2001) The trehalose myth revisited: Introduction to a symposium on stabilization of cells in the dry state. Cryobiology 43, 89–105.

    PubMed  CAS  Google Scholar 

  116. Crowe, J. H., Tablin, F., Wolkers, W. F., Gousset, K., Tsvetkova, N. M., and Ricker, J. V. (2003) Stabilization of membranes in human platelets freeze-dried with trehalose. Chem. Phys. Lipids. (in press).

  117. Crowe, J. H. and Crowe, L. M. Preservation of liposomes by freeze drying, in Liposome Technology, ed. 2 (Gregoriadis, G., ed.), CRC Press, Inc., Boca Raton, FL, 1992.

    Google Scholar 

  118. hays, L. M., Crowe, J. H., Wolkers, W. F., and Rudenko, S. (2001) Factors affecting leakage of trapped solutes from phospholipid vesicles during thermotropic phase transitions. Cryobiology 42, 88–102.

    PubMed  CAS  Google Scholar 

  119. Crowe, L. M. and Crowe, J. H. (1988) Trehalose and dry dipalmitolphosphatidylcholine revisited. Biochim. Biophys. Acta 946, 193–201.

    PubMed  CAS  Google Scholar 

  120. Crowe, J. H., Hoekstra, F. A., Nguyen, K. H. N., and Crowe, L. M. (1996) Is vitrification involved in depression of the phase transition temperature in dry phospholipids? Biochim. Biophys. Acta 1280, 187–196.

    PubMed  Google Scholar 

  121. Koster, K. L., Lei, Y. P., Anderson, M., Martin, S., and Bryant, G. (2000) Effects of vitrified and nonvitrified sugars on phosphatidylcholine fluid-to-gel phase transitions. Biophys. J. 78, 1932–1946.

    PubMed  CAS  Google Scholar 

  122. Sussich, F., Skopec, K., Brady, J., and Cesaro, A. (2001) Reversible dehydration of trehalose and anhydrobiosis: from solution state to an exotic crystal? Carbohydrate Res. 334, 165–176.

    CAS  Google Scholar 

  123. Guo, N., Puhlev, I., Brown, D. R., Mansbridge, J., and Levine, F. (2000) Trehalose expression confers desiccation tolerance on human cells. Nat. Biotechnol. 18, 168–171.

    PubMed  CAS  Google Scholar 

  124. Eroglu, A., Russo, M. J., Biaganski, R., Fowler, A., Cheley, S., Bayley, H., et al. (2000) Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat. Biotechnol. 18, 163–167.

    PubMed  CAS  Google Scholar 

  125. Beattie, G. M., Crowe, J. H., Lopez, A. D., Cirulli, V., Ricordi, C., and Hayek, A. (1997) Trehalose: a cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long-term storage. Diabetes 46, 519–523.

    PubMed  CAS  Google Scholar 

  126. De Castro, A. G. and Tunnacliffe, A. (2000) Intracellular trehalose improves osmotolerance but not desiccation tolerance in mammalian cells. FEBS Lett. 487, 199–202.

    Google Scholar 

  127. Gordon, S. L., Oppenheimer, S. R., Mackay, A. M., Brunnabend, J., Puhlev, I., and Levine, F. (2001) Recovery of human mesenchymal stem cells following dehydration and rehydration. Cryobiology 43, 182–187

    PubMed  CAS  Google Scholar 

  128. Chen, T., Acker, J. P., Eroglu, A., Cheley, S., Bayley, H., Fowler, A., and Toner, M. (2001) Beneficial effect of intracellular trehalose on the membrane integrity of dried mammalian cells. Cryobiology 43, 168–181.

    PubMed  CAS  Google Scholar 

  129. Wolkers, W. F., Walker, N. J., Tablin, F., and Crowe, J. H. (2001) Human platelets loaded with trehalose survive freeze-drying. Cryobiology 4, 79–87.

    Google Scholar 

  130. Wolkers, W. F., Looper, S. A., McKiernan, A. E., Tsvetkova, N. M., Tablin, F., and Crowe, J. H. (2002) Membrane and protein properties of freeze-dried mouse platelets. Mol. Mem. Biol. 19, 201–210.

    CAS  Google Scholar 

  131. Wolkers, W., Walker, N. J., Tamari, Y., Tablin, F., and Crowe, J. H. (2003) Towards a clinical application of freeze-dried human platelets. Cell Preservation Technol. 1, 175–188.

    CAS  Google Scholar 

  132. Ricker, J. V., Tsvetkova, N. M., Wolkers, W. F., Leidy, C. C., Tablin, F., Longo, M., and Crowe, J. H. (2003) Trehalose maintains phase separation in an air-dried binary lipid mixture. Biophys. J. 84, 3045–3051.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Crowe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leidy, C., Gousset, K., Ricker, J. et al. Lipid phase behavior and stabilization of domains in membranes of platelets. Cell Biochem Biophys 40, 123–148 (2004). https://doi.org/10.1385/CBB:40:2:123

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:40:2:123

Index Entries

Navigation