Skip to main content
Log in

Transcript abundance in mouse pituitaries with altered growth hormone expression quantified by reverse transcriptase polymerase chain reaction implicates transcription factor Zn-16 in gene regulation in vivo

  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The correlation of growth hormone (GH) mRNA abundance and expression of specific transcription factors was studied in pituitaries of panhypopituitary (Ames df/df and Snell dwJ/dwJ dwarf), isolated GH-deficient (lit/lit), and GH-overproducing (growth hormone-releasing hormone [GHRH] transgenic) mice compared with normal littermates. A fluorescence-based reverse transcriptase polymerase chain reaction assay was developed for seven target mRNAs: GH, prolactin (PRL), proopiomelanocortin (POMC), α-subunit of the glycoprotein hormones (αSU), Pit-1, Prop-1, and Zn-16. Amplification parameters for each of these primer pairs were determined in order to calculate initial mRNA transcript number. The reproducibility of the assay was found to be ±10% for either Pit-1 or Zn-16 mRNAs measured in characterized murine GHFT1-5 somatotroph precursor cells. The cell extracts also showed an increased abundance of both Zn-16 and Pit-1 mRNAs when compared with whole pituitary extracts. Measurement of copy number in normal pituitaries showed that for every 106 GH or PRL mRNAs, there were 3 × 105 POMC, 4 × 104 αSU, 2 × 103 Pit-1, and only 70 Zn-16 or Prop-1 transcripts. Transcript abundance in GH-altered mice as a percentage of copy number per normal gland showed that POMC was significantly reduced in dwJ/dwJ (p<0.01) and df/df (p<0.05) mice. αSU mRNA was reduced in df/df (p<0.05), dwJ/dwJ (p<0.05), and lit/lit (p<0.05) mice, but not in GHRH-excess mice. PRL mRNA was not detected in dwarf mice, reduced to 52% of normal in lit/lit (p<0.05), and unchanged in GHRH-excess animals. GH mRNA was not detected in dwarf mice, reduced to 1.3% in lit/lit (p<0.005), and increased to 242% in GHRH-excess mice (p<0.05). Pit-1 mRNA was not detected in dwarf mice, was 2.9% of normal in lit/lit (p<0.005) mice, and increased to 200% in GHRH-excess mice (p<0.05). Prop-1 was not present in dwarf mice, was decreased to 1.4% in lit/lit (p<0.01), and increased to 223% in GHRH-excess mice (p<0.05). Zn-16 abundance in df/df mice was significantly reduced (p<0.05) to 4.8% of normals, to 6.3% of normals in dwJ/dwJ (p<0.005), to 6.1% of normals in lit/lit (p<0.005) mice, and significantly elevated in GHRH-excess mice to 197% (p<0.05). Altered pituitary mRNA abundance was found for several products not previously measured, or thought not to be affected by these mutations. Correlation of GH mRNA abundance with transcription factor copy number showed a significant correlation for Pit-1, Prop-1, and Zn-16. These quantitative analyses provide the first in vivo evidence that Zn-16 mRNA abundance correlates with GH expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dasen, J. S. and Rosenfeld, M. G. (1999). Curr. Opin. Genet. Dev. 9, 566–574.

    Article  PubMed  CAS  Google Scholar 

  2. Giustina, A. and Veldhuis, J. D. (1998). Endocr. Rev. 19, 717–797.

    Article  PubMed  CAS  Google Scholar 

  3. Muller, E. E., Locatelli, V., and Cocchi, D. (1999). Physiol. Rev. 79, 511–607.

    PubMed  CAS  Google Scholar 

  4. Parks, J. S., Brown, M. R., Hurley, D. L., Phelps, C. J., and Wajnrajch, M. P. (1999). J. Clin. Endocrinol. Metab. 84, 4362–4370.

    Article  PubMed  CAS  Google Scholar 

  5. Phelps, C. J. and Hurley, D. L. (1999). Proc. Soc. Exp. Biol. Med. 222, 39–58.

    Article  PubMed  CAS  Google Scholar 

  6. Snell, G. D. (1929). Proc. Natl. Acad. Sci. USA 15, 733, 734.

    Article  PubMed  CAS  Google Scholar 

  7. Eicher, E. M. and Beamer, W. G. (1980). J. Hered. 71, 187–190.

    PubMed  CAS  Google Scholar 

  8. Schaible, R. and Gowen, J. W. (1961). Genetics 46, 896.

    Google Scholar 

  9. Eicher, E. M. and Beamer, W. G. (1976). J. Hered. 67, 87–91.

    PubMed  CAS  Google Scholar 

  10. Mayo, K. E., et al. (1988). Mol. Endocrinol. 2, 606–612.

    PubMed  CAS  Google Scholar 

  11. Li, S., et al. (1990). Nature 347, 528–533.

    Article  PubMed  CAS  Google Scholar 

  12. Sornson, M. W., et al. (1996). Nature 384, 327–333.

    Article  PubMed  CAS  Google Scholar 

  13. Gaylinn, B. D., et al. (1999). Endocrinology 140, 5066–5074.

    Article  PubMed  CAS  Google Scholar 

  14. Lin, S. C., et al. (1993). Nature 364, 208–213.

    Article  PubMed  CAS  Google Scholar 

  15. Godfrey, P., et al. (1993). Nat. Genet. 4, 227–232.

    Article  PubMed  CAS  Google Scholar 

  16. Pfäffle, R. W., et al. (1992). Science 257, 1118–1121.

    Article  PubMed  Google Scholar 

  17. Radovick, S., et al. (1992). Science 257, 1115–1118.

    Article  PubMed  CAS  Google Scholar 

  18. Wu, W., et al. (1998). Nat. Genet. 18, 147–149.

    Article  PubMed  CAS  Google Scholar 

  19. Maheshwari, H. G., Silverman, B. L., Dupuis, J., and Baumann, G. (1998). J. Clin. Endocrinol. Metab. 83, 4065–4074.

    Article  PubMed  CAS  Google Scholar 

  20. Phillips, J. A. III, Beamer, W. G., and Bartke, A. (1982). J. Endocrinol. 92, 405–407.

    PubMed  CAS  Google Scholar 

  21. Phelps, C. J. (1994). Proc. Soc. Exp. Biol. Med. 206, 6–23.

    PubMed  CAS  Google Scholar 

  22. Bartke, A., Goldman, B. D., Bex, F., and Dalterio, S. (1977). Endocrinology 101, 1760–1766.

    PubMed  CAS  Google Scholar 

  23. Bartke, A. (1964). Anat. Rec. 149, 225–236.

    Article  PubMed  CAS  Google Scholar 

  24. Roti, E., Christianson, D., Harris, A. R. C., Braverman, L. E., and Vagenakis, A. G. (1978). Endocrinology 103, 1662–1667.

    PubMed  CAS  Google Scholar 

  25. Bartke, A. and Lloyd, C. W. (1970). J. Endocrinol. 46, 321–326.

    Article  PubMed  CAS  Google Scholar 

  26. Bartke, A. (1971). J. Reprod. Fertil. 27, 121–124.

    Article  PubMed  CAS  Google Scholar 

  27. Behringer, R. R., Mathews, L. S., Palmiter, R. D., and Brinster, R. L. (1988). Genes Dev. 2, 453–461.

    Article  PubMed  CAS  Google Scholar 

  28. Borrelli, E., Heyman, R. A., Arias, C., Sawchenko, P. E., and Evans, R. M. (1989). Nature 339, 538–541.

    Article  PubMed  CAS  Google Scholar 

  29. Lew, D., et al. (1993). Genes Dev. 7, 683–693.

    Article  PubMed  CAS  Google Scholar 

  30. Vander Heyden, T. C., et al. (2000). Mol. Cell. Endocrinol. 159, 89–98.

    Article  Google Scholar 

  31. Lipkin, S. M., Naar, A. M., Kalla, K. A., Sack, R. A., and Rosenfeld, M. G. (1993). Genes Dev. 7, 1674–1687.

    Article  PubMed  CAS  Google Scholar 

  32. Wang, A. M., Doyle, M. V., and Mark, D. F. (1989). Proc. Natl. Acad. Sci. USA 86, 9717–9721.

    Article  PubMed  CAS  Google Scholar 

  33. Gilliland, G., Perrin, S., Blanchard, K., and Bunn, H. F. (1990). Proc. Natl. Acad. Sci. USA 87, 2725–2729.

    Article  PubMed  CAS  Google Scholar 

  34. Merzouki, A., et al. (1994). J. Virol. Methods 50, 115–128.

    Article  PubMed  CAS  Google Scholar 

  35. Zimmermann, K. and Mannhalter, J. W. (1996). Biotechniques 21, 268–279.

    PubMed  CAS  Google Scholar 

  36. Souazé, F., Ntodou-Thomé, A., Tran, C. Y., Rosténe, W., and Forgez, P. (1996). Biotechniques 21, 280–285.

    PubMed  Google Scholar 

  37. Tsai, S.-J. and Wiltbank, M. C. (1996). Biotechniques 21, 862–866.

    PubMed  CAS  Google Scholar 

  38. Hurley, D. L., Wojtkiewicz, P. W., and Phelps, C. J. (1995). Recent Prog. Horm. Res. 50, 443–448.

    PubMed  CAS  Google Scholar 

  39. Hermesz, E., Mackem, S., and Mahon, K. A. (1996). Development 122, 41–52.

    PubMed  CAS  Google Scholar 

  40. Dattani, M. T., et al. (1998). Nat. Genet. 19, 125–133.

    Article  PubMed  CAS  Google Scholar 

  41. Seidah, N. G., et al. (1994). DNA 13, 1163–1180.

    CAS  Google Scholar 

  42. Bach, I., et al. (1995). Proc. Natl. Acad. Sci. USA 92, 2720–2724.

    Article  PubMed  CAS  Google Scholar 

  43. Sheng, H. Z., et al. (1996). Science 272, 1004–1007.

    Article  PubMed  CAS  Google Scholar 

  44. Cheng, T. C., et al. (1983). Endocrinology 113, 1669–1678.

    Article  PubMed  CAS  Google Scholar 

  45. Moore, J. P. Jr., et al. (2000). Endocrinology 141, 81–90.

    Article  PubMed  CAS  Google Scholar 

  46. Amador, A. G., Parkening, T. A., Beamer, W. G., Bartke, A., and Collins, T. J. (1986). Endocrinologia Experimentalis 20, 349–358.

    PubMed  CAS  Google Scholar 

  47. Miller, T. L., Godfrey, P. A., Dealmeida, V. I., and Mayo, K. E. (1999). Endocrinology 140, 4152–4165.

    Article  PubMed  CAS  Google Scholar 

  48. Wilson, D. B. and Wyatt, D. P. (1993). Cell Tissue Res. 274, 579–585.

    Article  PubMed  CAS  Google Scholar 

  49. Roux, M., Bartke, A., Dumont, F., and Dubois, M. P. (1982). Cell Tissue Res. 223, 415–420.

    Article  PubMed  CAS  Google Scholar 

  50. Pernasetti, F., et al. (2000). J. Clin. Endocrinol. Metab. 85, 390–397.

    Article  PubMed  CAS  Google Scholar 

  51. Mayo, K. E., Godfrey, P. A., Suhr, S. T., Kulik, D. J., and Rahal, J. O. (1995). Recent Prog. Horm. Res. 50, 35–73.

    PubMed  CAS  Google Scholar 

  52. Osamura, R. Y., et al. (1993). Endocr. J. 40, 133–139.

    PubMed  CAS  Google Scholar 

  53. Cushman, L. J., et al. (2001). Hum. Mol. Genet. 10, 1141–1153.

    Article  PubMed  CAS  Google Scholar 

  54. Nakamura, Y. (1999). J. Clin. Endocrinol. Metab. 84, 1414–1419.

    Article  PubMed  CAS  Google Scholar 

  55. Gutierrez-Hartmann, A. (1994). Mol. Endocrinol. 8, 1447–1449.

    Article  PubMed  CAS  Google Scholar 

  56. Hammer, R. E., Brinster, R. L., Rosenfeld, M. G., Evans, R. M., and Mayo, K. E. (1985). Nature 315, 413–417.

    Article  PubMed  CAS  Google Scholar 

  57. Voss, T. C., Flynn, M. P., and Hurley, D. L. (2001). Mol. Endocrinol. 15, 1549–1558.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Hurley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojtkiewicz, P.W., Phelps, C.J. & Hurley, D.L. Transcript abundance in mouse pituitaries with altered growth hormone expression quantified by reverse transcriptase polymerase chain reaction implicates transcription factor Zn-16 in gene regulation in vivo. Endocr 18, 67–74 (2002). https://doi.org/10.1385/ENDO:18:1:67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:18:1:67

Key Words

Navigation