Skip to main content
Log in

Immunohistochemical separation of follicular variant of papillary thyroid carcinoma from follicular adenoma

  • Clinical Research
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

The accurate diagnosis of differentiated thyroid tumors is very important for clinical management of patients. The histopathological distinction between some types of differentiated thyroid tumors can be very difficult even for experienced pathologists. We used immunohistochemical markers from published data obtained from DNA expression profiling, tissue microarray analysis, and immunohistochemistry to analyze a series of 157 thyroid tumors and 5 normal thyroids. These analyses showed that several antibodies were useful in distinguishing follicular adenomas from follicular variant of papillary thyroid carcinomas including HBME-1, CITED 1, galectin-3, cytokeratin 19, and S100A4 (p<0.0001). A combination of markers consisting of a panel of HBME-1, galectin-3, and CK19 or a panel of HBME-1, CITED1, and galectin-3 was usually most effective in distinguishing follicular adenoma from follicular variant of papillary thyroid carcinoma. Because individual tumors may not express some of these markers, the use of a panel of antibodies is recommended. These results indicate that some individual antibodies or a panel of antibodies combined with histopathological analysis can be useful in separating follicular adenoma (FA) from follicular variant of papillary thyroid carcinoma (FVPTC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lloyd RV, Erickson LA, Casey MB, et al. Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol 28:1336–1340, 2004.

    Article  PubMed  Google Scholar 

  2. Jarzab B, Wiench M, Fujarewicz K, et al. Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications. Cancer Res 65:1587–1597, 2005.

    Article  PubMed  CAS  Google Scholar 

  3. Finley DJ, Zhu B, Barden CB, Fahey TJ, 3rd Discrimination of benign and malignant thyroid nodules by molecular profiling. Ann Surg 240:425–436, 2004; discussion 436–427, 2004.

    Article  PubMed  Google Scholar 

  4. Huang Y, Prasad M, Lemon WJ, et al. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci USA 98:15044–15049, 2001.

    Article  PubMed  CAS  Google Scholar 

  5. Prasad ML, Pellegara NS, Kloos RT, et al. ITED1 protein expression suggests papillary thyroid carcinoma in high throughput tissue microarray-based study. Thyroid 14:169–175 2004.

    Article  PubMed  CAS  Google Scholar 

  6. Cerutti JM, Delcelo R, Amadei MJ, et al. A preoperative diagnostic test that distinguishes benign from malignant thyroid carcinoma based on gene expression. J Clin Invest 113:1234–1242, 2004.

    Article  PubMed  CAS  Google Scholar 

  7. Hsu FD, Nielsen TO, Alkushi A. Tissue microarrays are an effective quality assurance tool for diagnostic immunohistochemistry. Mod Pathol 15:1374–1380, 2002.

    Article  PubMed  Google Scholar 

  8. Wasenius VM, Hemmer S, Kettunen E, et al. Hepatocyte growth factor receptor, matrix metalloproteinase-11, tissue inhibitor of metalloproteinase-1, and fibronectin are up-regulated in papillary thyroid carcinoma: a cDNA and tissue microarray study. Clin Cancer Res 9:68–75, 2003.

    PubMed  CAS  Google Scholar 

  9. Zou M, Famulski KS, Parhar RS, et al. Microarray analysis of metastasis-associated gene expression profiling in a murine model of thyroid carcinoma pulmonary metastasis: identification of S100A4 (Mts1) gene overexpression as a poor prognostic marker for thyroid carcinoma. J Clin Endocrinol Metab 89:6146–6154, 2004.

    Article  PubMed  CAS  Google Scholar 

  10. Hoos A, Stojadinovic A, Singh B, et al. Clinical significance of molecular expression profiles of Hurthle cell tumors of the thyroid gland analyzed via tissue microarrays. Am J Pathol 160:175–183, 2002.

    PubMed  CAS  Google Scholar 

  11. Bartek J, Bartkova J, Schneider J, et al. Expression of monoclonal antibody-defined epitopes of keratin 19 in human tumours and cultured cells. Eur J Cancer Clin Oncol 22:1441–1452, 1985.

    Article  Google Scholar 

  12. Miettinen M, Karkkainen P. Differential reactivity of HBME-1 and CD15 antibodies in benign and malignant thyroid tumours. Preferential reactivity with malignant tumours. Virchows Arch 429:213–219, 1996.

    Article  PubMed  CAS  Google Scholar 

  13. Xu XC, el-Naggar AK, Lotan R. Differential expression of galectin-1 and galectin-3 in thyroid tumors. Potential diagnostic implications. Am J Pathol 147:815–822, 1995.

    PubMed  CAS  Google Scholar 

  14. Jin L, Zhang S, Bayliss J, et al. Chromogranin A processing in human pituitary adenomas and carcinomas: analysis with region-specific antibodies. Endocr Pathol 14:37–48, 2003.

    Article  PubMed  CAS  Google Scholar 

  15. Nakamura N, Carney JA, Jin L, et al. RASSF1A and NORE1A methylation and BRAFV600E mutations in thyroid tumors. Lab Invest 85:1065–1075, 2005.

    Article  PubMed  CAS  Google Scholar 

  16. Prasad ML, Pellegata NS, Huang Y, et al. Galectin-3, fibronectin-1, CITED-1, HBME 1 and cytokeratin-19 immunohistochemistry is useful for the differential diagnosis of thyroid tumors. Mod Pathol 18:48–57, 2005.

    Article  PubMed  CAS  Google Scholar 

  17. Casey MB, Lohse CM, Lloyd RV: Distinction between papillary thyroid hyperplasia and papillary thyroid carcinoma by immunohistochemical staining for cytokeratin 19, galectin-3, and HBME-1. Endocr Pathol 14:55–60, 2003.

    Article  PubMed  Google Scholar 

  18. Cvejic D, Savin S, Paunovic I, et al. Immunohistochemical localization of galectin-3 in malignant and benign human thyroid tissue. Anticancer Res 18:2637–2641, 1998.

    PubMed  CAS  Google Scholar 

  19. De Micco C, Ruf J, Chrestian MA, et al. Immunohistochemical study of thyroid peroxidase in normal, hyperplastic, and neoplastic human thyroid tissues. Cancer 67: 3036–3041, 1991.

    Article  PubMed  Google Scholar 

  20. De Micco C, Vasko V, Garcia S, et al. Fine-needle aspiration of thyroid follicular neoplasm: diagnostic use of thyroid peroxidase immunocytochemistry with monoclonal antibody 47. Surgery 116:1031–1035, 1994.

    PubMed  Google Scholar 

  21. Savin S, Cvejic D, Isic T, et al. Thyroid peroxidase immunohistochemistry in differential diagnosis of thyroid tumors. Endocr Pathol 17:53–60, 2006.

    Article  PubMed  CAS  Google Scholar 

  22. Faroux MJ, Thobald S, Plout M, et al. Evaluation of the monoclonal antibody antithyroiperoxidase MoAb47 in the diagnostic decision of cold thyroid nodules by fine-needle aspiration. Pathol Res Pract 193:705–712, 1997.

    PubMed  CAS  Google Scholar 

  23. Raphael SJ, McKeown-Eyssen G, Asa SL. High-molecular-weight cytokeratin and cytokeratin-19 in the diagnosis of thyroid tumors. Mod Pathol 7:295–300, 1994.

    PubMed  CAS  Google Scholar 

  24. Raphael, SJ. The meanings of markers: ancillary techniques in diagnosis of thyroid neoplasia. Endocr Pathol 13:301–311, 2002.

    Article  PubMed  Google Scholar 

  25. Schelfhout LJ, Van Muijen GN, Fleuren GL. Expression of keratin 19 distinguishes papillary thyroid carcinoma from follicular carcinomas and follicular thyroid adenoma. Am J Clin Pathol 92:654–658, 1989.

    PubMed  CAS  Google Scholar 

  26. Baldini E, Toller M, Graziano FM, et al. Expression of matrix metalloproteinases and their specific inhibitors in normal and different human thyroid tumor cell lines. Thyroid 14:881–888, 2004.

    Article  PubMed  CAS  Google Scholar 

  27. Ito Y, Yoshida H, Tomoda C, et al. S100A4 expression is an early event of papillary carcinoma of the thyroid. Oncology 67:397–402. 2004.

    Article  PubMed  CAS  Google Scholar 

  28. Zou M, Al-Baradie RS, Al-Hindi H, Farid NR, Shi Y. S100A4 (Mts 1) gene overexpression is associated with invasion and metastasis of papillary thyroid carcinoma. Br J Cancer 93:1277–1284, 2005.

    Article  PubMed  CAS  Google Scholar 

  29. Katoh R, Bray CE, Suzuki K, et al. Growth activity in hyperplastic and neoplastic human thyroid determined by an immunohistochemical staining procedure using monoclonal antibody MIB-1. Hum Pathol 26: 139–146, 1995.

    Article  PubMed  CAS  Google Scholar 

  30. de Matos PS, Ferrena AP, de Oliveira Facuri F, et al. Usefulness of HBME-1, cytokeratin 19 and galectin-3 immunostaining in the diagnosis of thyroid malignancy. Histopathology 47:391–401, 2005.

    Article  PubMed  Google Scholar 

  31. Saggiorato E, DePompa R, Volante M, et al. Characterization of thyroid “follicular neoplasms” in fine-needle aspiration cytological specimens using a panel of immunohistochemical markers: a proposal for clinical application. Endocrine Rel Cancer 12:305–317, 2005.

    Article  CAS  Google Scholar 

  32. Nikiforov YE. Genetic alterations involved in the transition from well-differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocr Pathol 15:319–327, 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo V. Lloyd MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, N., Erickson, L.A., Jin, L. et al. Immunohistochemical separation of follicular variant of papillary thyroid carcinoma from follicular adenoma. Endocr Pathol 17, 213–223 (2006). https://doi.org/10.1385/EP:17:3:213

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/EP:17:3:213

Key Words

Navigation