Skip to main content
Log in

Diagnostic value of differential expression of CK19, galectin-3, HBME-1, ERK, RET, and p16 in benign and malignant follicular-derived lesions of the thyroid: An immunohistochemical tissue microarray analysis

  • Clinical Research
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Background

Several immunohistochemical markers have been used to aid in the diagnosis of follicular-derived lesions of the thyroid (FDLT). In this study we analyze the diagnostic efficacy of an immunopanel of antibodies to cytokeratin-19 (CK19), galectin-3 (GAL-3), HBME-1, anti-MAP kinase (ERK), ret-oncoprotein (RET), and p16 using a tissue microarray consisting of both benign and malignant FDLT.

Design

The study cohort consisted of 90 cases of FDLT (53 benign, 37 malignant) embedded in a microarray and immunostained with antibodies to CK19, Gal-3, HMBE-1, ERK, RET, and p16. Staining was scored as positive when >25% of the lesional cells showed positive immunostaining.

Results

HMBE-1 was expressed in 70% of malignant and 10% of benign FDLT (p value: <0.0001). (CK19 and GAL-3 were positive in 70% and 73% of malignant lesions, respectively, and 34% of benign FDLT (p value 0.0005 and 0.0015, respectively). ERK was positive in 4% of the benign and 32% of the malignant cases (p value 0.0002). p16 was expressed in 2% and 46% of the benign and malignant lesions, respectively (p value 0.0001). RET positivity was identified in 15% of the benign lesions and 27% of the malignant cases (p value 0.0016).

Conclusions

HBME-1, ERK, and p16 were more specific for malignancy, whereas CK19 and GAL-3 stained benign lesions with a higher frequency and were not specific for malignant FDLT. RET-oncoprotein showed poor sensitivity and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baloch ZW, Livolsi VA. Follicular-patterned lesions of the thyroid: the bane of the pathologist. Am J Clin Pathol 117(1):143–150, 2002.

    Article  PubMed  Google Scholar 

  2. Rosai J, Carcangiu ML, DeLellis RA. Tumors of the thyroid gland. In: Rosai J, Sobin LE, eds. Washington, DC: Armed Forces Institute of Pathology, 1992.

    Google Scholar 

  3. Williams ED, Abrosimov A, Bogdanova TI, Roasi J, Sidorov Y, Thomas GA. Two proposals regarding the terminology of thyroid tumors. Guest Editorial. Int J Surg Pathol 8(3):181–183, 2000.

    Google Scholar 

  4. Baloch Z, LiVolsi VA, Henricks WH, Sebak BA. Encapsulated follicular variant of papillary thyroid carcinoma. Am J Clin Pathol 118(4):603–605; discussion 605–606, 2002.

    Google Scholar 

  5. Baloch ZW, Gupta PK, Yu GH, Sack MJ, LiVolsi VA. Follicular variant of papillary carcinoma. Cytologic and histologic correlation. Am J Clin Pathol 111(2):216–222, 1999.

    PubMed  CAS  Google Scholar 

  6. Miettinen M, Franssila KO. Variable expression of keratins and nearly uniform lack of thyroid transcription factor 1 in thyroid anaplastic carcinoma. Hum Pathol 31(9):1139–1145, 2000.

    Article  PubMed  CAS  Google Scholar 

  7. Miettinen M, Karkkainen P. Differential reactivity of HBME-1 and CD15 antibodies in benign and malignant thyroid tumours. Preferential reactivity with malignant tumours. Virchows Arch 429(4–5):213–219, 1996.

    PubMed  CAS  Google Scholar 

  8. Cheung CC, Ezzat S, Freeman JL, Rosen JB, Asa SL. Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod Pathol 14(4):338–342, 2001.

    Article  PubMed  CAS  Google Scholar 

  9. Papotti M, Rodriguez J, Pompa RD, Bartolazzi A, Rosai J. Galectin-3 and HBME-1 expression in well-differentiated thyroid tumors with follicular architecture of uncertain malignant potential. Mod Pathol 18(4):541–546, 2004.

    Article  CAS  Google Scholar 

  10. Prasad ML, Pellegata NS, Huang Y, Nagaraja HN, Chapelle Ade L, Kloos RT. Galectin-3, fibronectin-1, CITED-1, HBME1 and cytokeratin-19 immunohistochemistry is useful for the differential diagnosis of thyroid tumors. Mod Pathol 18(1):48–57, 2005.

    Article  PubMed  CAS  Google Scholar 

  11. Saggiorato E, Cappia S, De Giuli P, et al. Galectin-3 as a presurgical immunocytodiagnostic marker of minimally invasive follicular thyroid carcinoma. J Clin Endocrinol Metab 86(11):5152–5158, 2001.

    Article  PubMed  CAS  Google Scholar 

  12. Baloch ZW, Abraham S, Roberts S, LiVolsi VA. Differential expression of cytokeratins in follicular variant of papillary carcinoma: an immunohistochemical study and its diagnostic utility. Hum Pathol 30(10):1166–1171, 1999.

    Article  PubMed  CAS  Google Scholar 

  13. Rigau V, Martel B, Evrard C, Rousselot P, Galateau-Salle F. Interet de l'HBME-1 en pathologie thyroidienne. Ann Pathol 21(1): 15–20, 2001.

    PubMed  CAS  Google Scholar 

  14. Papotti M, Volante M, Saggiorato E, Deandreis D, Veltri A, Orlandi F. Role of galectin-3 immunodetection in the cytological diagnosis of thyroid cystic papillary carcinoma. Eur J Endocrinol 147(4):515–521, 2002.

    Article  PubMed  CAS  Google Scholar 

  15. Herrmann ME, LiVolsi VA, Pasha TL, Roberts SA, Wojcik EM, Baloch ZW. Immunohistochemical expression of galectin-3 in benign and malignant thyroid lesions. Arch Pathol Lab Med 126(6):710–713, 2002.

    PubMed  CAS  Google Scholar 

  16. Casey MB, Lohse CM, Lloyd RV. Distinction between papillary thyroid hyperplasia and papillary thyroid carcinoma by immunohistochemical staining for cytokeratin 19, galectin-3, and HBME-1. Endocr Pathol 14(1):55–60, 2003.

    Article  PubMed  Google Scholar 

  17. Moyano L, Franco C, Carreno L, Robinson P, Sanchez G. [HBME and cyclin D1 as diagnostic markers for follicular thyroid carcinoma]. Rev Med Chil 132(3):279–284, 2004.

    PubMed  Google Scholar 

  18. Rosai J. Immunohistochemical markers of thyroid tumors: significance and diagnostic applications. Tumori 89(5):517–519, 2003.

    PubMed  Google Scholar 

  19. Wan PT, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116(6):855–867, 2004.

    Article  PubMed  CAS  Google Scholar 

  20. Riesco-Eizaguirre G, Gutierrez-Martinez P, Garcia-Cabezas MA, Nistal M, Santisteban P. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I− targeting to the membrane. Endocr Relat Cancer 13(1):257–269, 2006.

    Article  PubMed  CAS  Google Scholar 

  21. Melillo RM, Castellone MD, Guarino V, et al. The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J Clin Invest 115(4):1068–1081, 2005.

    Article  PubMed  CAS  Google Scholar 

  22. Xu X, Quiros RM, Gattuso P, Ain KB, Prinz RA. High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res 63(15):4561–4567, 2003.

    PubMed  CAS  Google Scholar 

  23. Grieco M, Santoro M, Berlingieri MT, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60(4):557–563, 1990.

    Article  PubMed  CAS  Google Scholar 

  24. Jhiang SM, Caruso DR, Gilmore E, et al. Detection of the PTC/ret TPC oncogene in human thyroid cancers. Oncogene 7(7):1331–1337, 1992.

    PubMed  CAS  Google Scholar 

  25. Ito T, Seyama T, Iwamoto KS, et al. Activated RET oncogene in thyroid cancers of children from areas contaminated by Chernobyl accident. Lancet 344(8917):259, 1994.

    PubMed  CAS  Google Scholar 

  26. Jhiang SM, Mazzaferri EL. The ret/PTC oncogene in papillary thyroid carcinoma. J Lab Clin Med 123(3):331–337, 1994.

    PubMed  CAS  Google Scholar 

  27. Santoro M, Dathan NA, Berlingieri MT, et al. Molecular characterization of RET/PTC3; a novel rearranged version of the RET proto-oncogene in a human thyroid papillary carcinoma. Oncogene 9(2):509–516, 1994.

    PubMed  CAS  Google Scholar 

  28. Smyth P, Finn S, Cahill S, O'Regan E, Flavin R, O'Leary JJ, Sheils O. ret/PTC and BRAF act as distinct molecular, time-dependant triggers in a sporadic Irish cohort of papillary thyroid carcinoma. Int J Surg Pathol 13(1):1–8 2005.

    PubMed  CAS  Google Scholar 

  29. Salvatore G, Giannini R, Faviana P, et al. Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-needle aspiration diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab 89(10): 5175–5180, 2004.

    Article  PubMed  CAS  Google Scholar 

  30. Elisei R, Shiohara M, Koeffler HP, Fagin JA. Genetic and epigenetic alterations of the cyclin-dependent kinase inhibitors p15INK4b and p16INK4a in human thyroid carcinoma cell lines and primary thyroid carcinomas. Cancer 83(10):2185–2193, 1998.

    Article  PubMed  CAS  Google Scholar 

  31. Hoque MO, Rosenbaum E, Westra WH, et al. Quantitative assessment of promoter methylation profiles in thyroid neoplasms. J Clin Endocrinol Metab 90(7):4011–4018, 2005.

    Article  PubMed  CAS  Google Scholar 

  32. Ferenc T, Lewinski A, Lange D, et al Analysis of P161NK4A protein expression in follicular thyroid tumors. Pol J Pathol 55(4): 143–148, 2004.

    PubMed  CAS  Google Scholar 

  33. Boltze C, Zack S, Quednow C, Bettge S, Roessner A, Schneider-Stock R. Hypermethylation of the CDKN2/p16INK4A promotor in thyroid carcinogenesis. Pathol Res Pract 199(6):399–404, 2003.

    Article  PubMed  CAS  Google Scholar 

  34. Nasser SM, Pitman MB, Pilch BZ, Faquin WC. Fine-needle aspiration biopsy of papillary thyroid carcinoma: diagnostic utility of cytokeratin 19 immunostaining. Cancer 90(5):307–311, 2000.

    Article  PubMed  CAS  Google Scholar 

  35. Judkins AR, Roberts SA, Livolsi VA. Utility of immunohistochemistry in the evaluation of necrotic thyroid tumors. Hum Pathol 30(11):1373–1376, 1999.

    Article  PubMed  CAS  Google Scholar 

  36. Mai KT, Landry DC, Thomas J, et al. Follicular adenoma with papillary architecture: a lesion mimicking papillary thyroid carcinoma. Histopathology 39(1):25–32, 2001.

    Article  PubMed  CAS  Google Scholar 

  37. Prasad ML, Huang Y, Pellegata NS, de la Chapelle A, Kloos RT. Hashimoto's thyroiditis with papillary thyroid carcinoma (PTC)-like nuclear alterations express molecular markers of PTC. Histopathology 45(1):39–46, 2004.

    Article  PubMed  CAS  Google Scholar 

  38. Cameron BR, Berean KW. Cytokeratin subtypes in thyroid tumours: immunohistochemical study with emphasis on the follicular variant of papillary carcinoma. J Otolaryngol 32(5):319–322, 2003.

    PubMed  Google Scholar 

  39. Zhou WX, Xiao Y, Liu TH, Luo YF, Cao JL. [Expression of cytokeratins and ret in thyroid papillary carcinoma]. Zhonghua Bing Li Xue Za Zhi 32(6):530–533, 2003.

    PubMed  Google Scholar 

  40. Wapnir IL, Goris M, Yudd A, et al. The Na+/I−symporter mediates iodide uptake in breast cancer metastases and can be selectively down-regulated in the thyroid. Clin Cancer Res 10(13):4294–4302, 2004.

    Article  PubMed  CAS  Google Scholar 

  41. de Matos PS, Ferreira AP, de Oliveira Facuri F, Assumpcao LV, Metze K, Ward LS. Usefulness of HBME-1, cytokeratin 19 and galectin-3 immunostaining in the diagnosis of thyroid malignancy. Histopathology 47(4):391–401, 2005.

    Article  PubMed  Google Scholar 

  42. Mezosi E, Wang SH, Utsugi S, et al. Interleukin-1beta and tumor necrosis factor (TNF)-alpha sensitize human thyroid epithelial cells to TNF-related apoptosis-inducing ligand-induced apoptosis through increases in procaspase-7 and bid, and the down-regulation of p44/42 mitogen-activated protein kinase activity. J Clin Endocrinol Metab 89(1):250–257, 2004.

    Article  PubMed  CAS  Google Scholar 

  43. Rossi ED, Raffaelli M, Mule A, et al. Simultaneous immunohistochemical expression of HBME-1 and galectin-3 differentiates papillary carcinomas from hyperfunctioning lesions of the thyroid. Histopathology 48(7):795–800, 2006.

    Article  PubMed  CAS  Google Scholar 

  44. Rossi ED, Raffaelli M, Minimo C, et al. Immunocytochemical evaluation of thyroid neoplasms on thin-layer smears from fine-needle aspiration biopsies. Cancer 105(2):87–95, 2005.

    Article  PubMed  Google Scholar 

  45. Baloch ZW, LiVolsi VA. The quest for a magic tumor marker: continuing saga in the diagnosis of the follicular lesions of thyroid. Am J Clin Pathol 118 (2):165–166, 2002.

    Article  PubMed  Google Scholar 

  46. Baloch ZW, Wu H, LiVolsi VA. Post-fine-needle aspiration spindle cell nodules of the thyroid (PSCNT). Am J Clin Pathol 111(1): 70–74, 1999.

    PubMed  CAS  Google Scholar 

  47. Baloch ZW, LiVolsi VA. Post fine-needle-aspiration histologic alterations of thyroid revisited. Am J Clin Pathol 112(3):311–316, 1999.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. W. Baloch MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barroeta, J.E., Baloch, Z.W., Lal, P. et al. Diagnostic value of differential expression of CK19, galectin-3, HBME-1, ERK, RET, and p16 in benign and malignant follicular-derived lesions of the thyroid: An immunohistochemical tissue microarray analysis. Endocr Pathol 17, 225–234 (2006). https://doi.org/10.1385/EP:17:3:225

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/EP:17:3:225

Key Words

Navigation