Skip to main content
Log in

Induction of RNA interference in dendritic cells

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Dendritic cells (DC) reside at the center of the immunological universe, possessing the ability both to stimulate and inhibit various types of responses. Tolerogenic/regulatory DC with therapeutic properties can be generated through various means of manipulations in vitro and in vivo. Here we describe several attractive strategies for manipulation of DC using the novel technique of RNA interference (RNAi). Additionally, we overview some of our data regarding yet undescribed characteristics of RNAi in DC such as specific transfection strategies, persistence of gene silencing, and multi-gene silencing. The advantages of using RNAi for DC genetic manipulation gives rise to the promise of generating tailor-made DC that can be used effectively to treat a variety of immunologically mediated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinman RM, Adams JC, Cohn ZA: Identification of a novel cell type in peripheral lymphoid organs of mice. IV. Identification and distribution in mouse spleen. J Exp Med 1975;141:804–820.

    PubMed  CAS  Google Scholar 

  2. Steinman RM, Gutchinov B, Witmer MD, et al.: Nussenzweig MC. Dendritic cells are the principal stimulators of the primary mixed leukocyte reaction in mice. J Exp Med 1983;157:613–627.

    Article  PubMed  CAS  Google Scholar 

  3. Platsoucas CD, Fincke JE, Pappas J, et al.: Immune responses to human tumors: development of tumor vaccines. Anticancer Res 2003;23:1969–1996.

    PubMed  CAS  Google Scholar 

  4. MacLennan I, Vinuesa C: Dendritic cells, BAFF, and APRIL: innate players in adaptive antibody responses. Immunity 2002;17:235–238.

    Article  PubMed  CAS  Google Scholar 

  5. Mailliard RB, Son YI, Redlinger R, et al.: Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function. J Immunol 2003;171:2366–2373.

    PubMed  CAS  Google Scholar 

  6. Moretta A: Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat Rev Immunol 2002;2: 957–964.

    Article  PubMed  CAS  Google Scholar 

  7. Nishimura T, Kitamura H, Iwakabe K, et al.: The interface between innate and acquired immunity: glycolipid antigen presentation by CD1d-expressing dendritic cells to NKT cells induces the differentiation of antigen-specific cytotoxic T lymphocytes. Int Immunol 2000;12: 987–994.

    Article  PubMed  CAS  Google Scholar 

  8. Chun T, Page MJ, Gapin L, et al.: CD1d-expressing dendritic cells but not thymic epithelial cells can mediate negative selection of NKT cells. J Exp Med 2003;197: 907–918.

    Article  PubMed  CAS  Google Scholar 

  9. Kufer P, Zettl F, Borschert K, et al.: Minimal costimulatory requirements for T cell priming and TH1 differentiation: activation of naive human T lymphocytes by tumor cells armed with bifunctional antibody constructs. Cancer Immun 2001;1:10.

    PubMed  CAS  Google Scholar 

  10. Morel Y, Truneh A, Sweet RW, et al.: The TNF superfamily members LIGHT and CD154 (CD40 ligand) costimulate induction of dendritic cell maturation and elicit specific CTL activity. J Immunol 2001;167:2479–2486.

    PubMed  CAS  Google Scholar 

  11. Taams L, Vukmanovic-Stejic M, Salmon M, et al.: Immune regulation by CD4+CD25+ regulatory T cells: implications for transplantation tolerance. Transpl Immunol 2003;11:277–285.

    Article  PubMed  CAS  Google Scholar 

  12. Ichim TE, Zhong R, Min WP: Prevention of allograft rejection by in vitro generated tolerogenic dendritic cells. Transpl Immunol 2003;11:295–306.

    Article  PubMed  CAS  Google Scholar 

  13. Steinman RM, Hawiger D, Nussenzweig MC: Tolerogenic dendritic cells. Annu Rev Immunol 2003;21: 685–711.

    Article  PubMed  CAS  Google Scholar 

  14. Morelli AE, Thomson AW: Dendritic cells: regulators of alloimmunity and opportunities for tolerance induction. Immunol Rev 2003;196:125–146.

    Article  PubMed  CAS  Google Scholar 

  15. Sato K, Yamashita N, Baba M, et al.: Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity 2003;18: 367–379.

    Article  PubMed  CAS  Google Scholar 

  16. Min WP, Zhou D, Ichim TE, et al.: Inhibitory feedback loop between tolerogenic dendritic cells and regulatory T cells in transplant tolerance. J Immunol 2003;170: 1304–1312.

    PubMed  CAS  Google Scholar 

  17. Levings MK, Bacchetta R, Schulz U, Roncarolo MG: The role of IL-10 and TGF-beta in the differentiation and effector function of T regulatory cells. Int Arch Allergy Immunol 2002;129:263–276.

    Article  PubMed  CAS  Google Scholar 

  18. Lutz MB, Suri RM, Niimi M, et al.: Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur J Immunol 2000;30: 1813–1822.

    Article  PubMed  CAS  Google Scholar 

  19. Bonham CA, Peng L, Liang X, et al.: Marked prolongation of cardiac allograft survival by dendritic cells genetically engineered with NF-kappa B oligodeoxyribonucleotide decoys and adenoviral vectors encoding CTLA4-Ig. J Immunol 2002;169:3382–3391.

    PubMed  CAS  Google Scholar 

  20. Min WP, Zhou D, Ichim TE, et al.: Synergistic tolerance induced by LF15-0195 and anti-CD45RB monoclonal antibody through suppressive dendritic cells. Transplantation 2003;75:1160–1165.

    Article  PubMed  CAS  Google Scholar 

  21. Yang J, Bernier SM, Ichim TE, et al.: LF15-0195 generates tolerogenic dendritic cells by suppression of NF-kappaB signaling through inhibition of IKK activity. J Leukoc Biol 2003;74:438–447.

    Article  PubMed  CAS  Google Scholar 

  22. Takayama T, Kaneko K, Morelli AE, et al.: Retroviral delivery of transforming growth factor-beta1 to myeloid dendritic cells: inhibition of T-cell priming ability and influence on allograft survival. Transplantation 2002;74: 112–119.

    Article  PubMed  CAS  Google Scholar 

  23. Min WP, Gorczynski R, Huang XY, et al.: Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival. J Immunol 2000;164:161–167.

    PubMed  CAS  Google Scholar 

  24. Yoshimura S, Bondeson J, Foxwell BM, et al.: Effective antigen presentation by dendritic cells is NF-kappaB dependent: coordinate regulation of MHC, co-stimulatory molecules and cytokines. Int Immunol 2001;13:675–683.

    Article  PubMed  CAS  Google Scholar 

  25. Liang X, Lu L, Chen Z, et al.: Administration of dendritic cells transduced with antisense oligodeoxyribonucleotides targeting CD80 or CD86 prolongs allograft survival. Transplantation 2003;76:721–729.

    Article  PubMed  Google Scholar 

  26. Knosalla C, Gollackner B, Cooper DK: Anti-CD154 monoclonal antibody and thromboembolism revisted. Transplantation 2002;74:416–417.

    Article  PubMed  Google Scholar 

  27. Jorgensen RA, Cluster PD, English J, et al.: Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol Biol 1996;31:957–973.

    Article  PubMed  CAS  Google Scholar 

  28. Fire A, Xu S, Montgomery MK, et al.: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806–811.

    Article  PubMed  CAS  Google Scholar 

  29. Proud CG: PKR: a new name and new roles. Trends Biochem Sci 1995;20:241–246.

    Article  PubMed  CAS  Google Scholar 

  30. Elbashir SM, Harborth J, Lendeckel W, et al.:Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:494–498.

    Article  PubMed  CAS  Google Scholar 

  31. Adah SA, Bayly SF, Cramer H, et al.: Chemistry and biochemistry of 2′, 5′-oligoadenylate-based antisense strategy. Curr Med Chem 2001;8:1189–1212.

    PubMed  CAS  Google Scholar 

  32. Williams BR: Signal integration via PKR. Sci STKE 2001;2001:RE2.

    Article  PubMed  CAS  Google Scholar 

  33. Saunders LR, Barber GN: The dsRNA binding protein family: critical roles, diverse cellular functions. FASEB J 2003;17:961–983.

    Article  PubMed  CAS  Google Scholar 

  34. Timmons L: The long and short of siRNAs. Mol Cell 2002;10:435–437.

    Article  PubMed  CAS  Google Scholar 

  35. Bertrand J, Pottier M, Vekris A, et al.: Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun 2002; 296:1000.

    Article  PubMed  CAS  Google Scholar 

  36. Celotto AM., Graveley BR: Exon-specific RNAi: a tool for dissecting the functional relevance of alternative splicing. RNA 2002;8:718–724.

    Article  PubMed  CAS  Google Scholar 

  37. Grishok A, Tabara H, Mello CC: Genetic requirements for inheritance of RNAi in C. elegans. Science 2000; 287:2494–2497.

    Article  PubMed  CAS  Google Scholar 

  38. Brummelkamp TR, Bernards R, Agami R: A system for stable expression of short interfering RNAs in mammalian cells. Science 2002;296:550–553.

    Article  PubMed  CAS  Google Scholar 

  39. Paul CP, Good PD, Winer I, et al.: Effective expression of small interfering RNA in human cells. Nat Biotechnol 2002;20:505–508.

    Article  PubMed  CAS  Google Scholar 

  40. Devroe E, Silver PA: Retrovirus-delivered, siRNA. BMC Biotechnol 2002;2:15.

    Article  PubMed  Google Scholar 

  41. Yang D, Buchholz F, Huang Z, et al.: Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proc Natl Acad Sci USA 2002;99:9942–9947.

    Article  PubMed  CAS  Google Scholar 

  42. Harborth J, Elbashir SM, Vandenburgh K, et al.: Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisence Nucleic Acid Drug Dev 2003;13:83–105.

    Article  CAS  Google Scholar 

  43. Amarasinghe AK, Calin-Jageman I, Harmouch A, et al.: Escherichia coli ribonuclease III: affinity purification of hexahistidine-tagged enzyme and assays for substrate binding and cleavage. Methods Enzymol 2001;342:143–158.

    PubMed  CAS  Google Scholar 

  44. Kawasaki H, Suyama E, Iyo M, et al.: siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Res 2003;31:981–987.

    Article  PubMed  CAS  Google Scholar 

  45. Tuschl T: Expanding small RNA interference Nat Biotechnol 2002;20:446–448.

    Article  PubMed  CAS  Google Scholar 

  46. Matsukura S, Jones PA, Takai D: Establishment of conditional vectors for hairpin siRNA knockdowns. Nucleic Acids Res 2003;31:e77.

    Article  PubMed  Google Scholar 

  47. Lee NS, Dohjima T, Bauer G, et al.: Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 2002;20:500–505.

    PubMed  CAS  Google Scholar 

  48. Paddison PJ, Caudy AA, Bernstein E, et al.: Short hairpin RNAs (shRNAs) induced sequence-specific silencing in mammalian cells. Genes Dev 2002;16:948–958.

    Article  PubMed  CAS  Google Scholar 

  49. Boden D, Pusch O, Lee F, et al.: Promoter choice affects the potency of HIV-1 specific RNA interference Nucleic Acids Res 2003;31:5033–5038.

    Article  PubMed  CAS  Google Scholar 

  50. Kobayashi N, Matsui Y, Kawase A, et al.: Vector-based in vivo RNA interference: dose- and time-dependent suppression of transgene expression. J Pharmacol Exp Ther 2003.

  51. Hasuwa H., Kaseda K, Einardottir T, et al.: Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett 2002;532:227–230.

    Article  PubMed  CAS  Google Scholar 

  52. Brummelkamp TR, Nijman SM, Dirac AM, et al.: Loss of the cylindromatosis tumor suppressor inhibits apoptosis by activating NF-kappa B. Nature 2003;424:797–801.

    Article  PubMed  CAS  Google Scholar 

  53. Xu ZX, Zhao RX, Ding T, et al.: PML4 induces apoptosis by inhibition of survivin expression. J Biol Chem 2003;279:1838–1844.

    Article  PubMed  Google Scholar 

  54. Riss D, Jin L, Qian X, Bayliss J, et al.: Differential expression of galectin-3 in pituitary tumors. Cancer Res 2003;63:2251–2255.

    PubMed  CAS  Google Scholar 

  55. Oruetxebrarria I, Venturini F, Kekarainen T, et al.: p16INK4a is required for hSNF5 chromatin-remodeler induced cellular senescence in malignant rhabdoid tumor cells. J Biol Chem 2003;279:3807–3816.

    Article  CAS  Google Scholar 

  56. Sarkar SN, Das HK: Regulatory roles of presenilin-1 and nicastrin in neuronal differentiation during in vitro neurogenesis. J Neurochem 2003;87:333–343.

    Article  PubMed  CAS  Google Scholar 

  57. Calegari F, Haubensak W, Yang D, et al.: Tissue-specific RNA interference in postimplantation mouse embryos with endoribonuclease-prepared short interfering RNA. Proc Natl Acad Sci USA 2002;99:14236–14240.

    Article  PubMed  CAS  Google Scholar 

  58. Barton GM, Medzhitov R: Retroviral delivery of small interfering RNA into primary cells. Proc Natl Acad Sci USA 2002;99:14943–14945.

    Article  PubMed  CAS  Google Scholar 

  59. Xia H, Mao Q, Paulson HL, et al.: siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 2002; 20:1006–1010.

    Article  PubMed  CAS  Google Scholar 

  60. Abbas_Terki T, Blanco-Bose W, Deglon N, et al.: Lentiviral-mediated RNA interference. Hum Gene Ther 2002;13:2197–2201.

    Article  PubMed  CAS  Google Scholar 

  61. Qin XF, An DS, Chen JS, et al.: Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA aginst CCR5. Proc Natl Acad Sci USA 2003;100:183–188.

    Article  PubMed  CAS  Google Scholar 

  62. Lee MT, Coburn GA, McClure MO, et al.: Inhibition of human immunodeficiency virus type 1 replication in primary macrophages by using Tat-or CCR5-specific small interfering RNAs expressed from a lentivirus vector. J Virol 2003;77:11964–11972.

    Article  PubMed  CAS  Google Scholar 

  63. Rubinson DA, Dillon CP, Kwiatkowski AV, et al.: A lentivirus-based system to functionlly silence gens in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003;33:401–406.

    Article  PubMed  CAS  Google Scholar 

  64. Tomar RS, Matta H, Chaudhary PM: Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene 2003;22:5712–5715.

    Article  PubMed  CAS  Google Scholar 

  65. Sorensen DR, Leirdal M, Sioud M: Gene silencing by systmic delivery of synthetic siRNAs in adult mice. J Mol Biol 2003;327:761–766.

    Article  PubMed  CAS  Google Scholar 

  66. Wong AW, Brickey WJ, Taxman DJ, et al.: CIITA-regulated plexin-A1 affects T-cell-dendritic cell interactions. Nat Immunol 2003;4:891–898.

    Article  PubMed  CAS  Google Scholar 

  67. Urban BC, Willcox N, Roberts DJ: A role for CD36 in the regulation of dendritic cell function. Proc Natl Acad Sci USA 2001;98:8750–8755.

    Article  PubMed  CAS  Google Scholar 

  68. Harshyne LA, Zimmer MI, Watkins SC, et al.: A role for class A scavenger receptor in dendritic cell nibbling from live cells, J Immunol 2003;170:2302–2309.

    PubMed  CAS  Google Scholar 

  69. Norbury CC, Chambers BJ, Prescott AR, et al.: Constitutive macropinocytosis allows TAP-dependent major histocompatibility complex class I presentation of exogenous soluble antigen by bone marrow-derived dendritic cells. Eur J Immunol 1997;27:280–288.

    Article  PubMed  CAS  Google Scholar 

  70. Kato M, Neil TK, Fearnley DB, et al.: Expression of multilectin receptors and comparative FITC-dextran uptake by human dendritic cells. Int Immunol 2000;12:1511–1519.

    Article  PubMed  CAS  Google Scholar 

  71. Condon C, Watkins SC, Celluzzi CM, et al.: DNA-based immunization by in vivo transfection of dendritic cells. Nat Med 1996;2:1122–1128.

    Article  PubMed  CAS  Google Scholar 

  72. Sullenger BA, Gilboa E: Enmerging clinical applications of RNA. Nature 2002;418:252–258.

    Article  PubMed  CAS  Google Scholar 

  73. McCaffrey AP, Meuse L, Pham TT, et al.: RNA interference in adult mice. Nature 2002;418:38–39.

    Article  PubMed  CAS  Google Scholar 

  74. Song E, Lee SK, Wang J, et al.: RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 2003;9:347–351.

    Article  PubMed  CAS  Google Scholar 

  75. Zender L, Hutker S, Liedtke C, et al.: Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc Natl Acad Sci USA 2003;100:7797–7802.

    Article  PubMed  CAS  Google Scholar 

  76. Wojtkowiak A, Siek A, Alejska M, et al.: RNAi and viral vectors as useful tools in the functional genomics of plants. Construction of BMV-based vectors for RNA delivery into plant cells. Cell Mol Biol Lett 2002;7:511–522.

    PubMed  CAS  Google Scholar 

  77. Pickford AS, Cognoi C: RNA-mediated gene silencing. Cell Mol Life Sci 2003;60:871–882.

    PubMed  CAS  Google Scholar 

  78. Timmons L, Court DL, Fire A: Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 2001;263:103–112.

    Article  PubMed  CAS  Google Scholar 

  79. McManus MT, Haines BB, Dillon CP, et al.: Small interfering RNA-mediated gene silencing in T lymphocytes. J Immunol 2002;169:5754–5760.

    PubMed  CAS  Google Scholar 

  80. Martin-Lluesma S, Stucke VM, Nigg EA: Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 2002;297:2267–2270.

    Article  PubMed  CAS  Google Scholar 

  81. Pal-Bhadra M, Bhadra U, Birchler JA: RNAi related mechanisms affect both transcriptional and postranscriptional transgence silencing in Drosophila. Mol Cell 2002;9:315–327.

    Article  PubMed  CAS  Google Scholar 

  82. D'Andrea A, Rengaraju M, Valiante NM, et al.: Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J Exp Med 1992;176:1387–1398.

    Article  PubMed  Google Scholar 

  83. Holscher C: The power of combinatorial immunology: IL-12 and IL-12-related dimeric cytokines in infectious diseases. Med Microbiol Immunol (Berl) 2004;193:1–17.

    Article  CAS  Google Scholar 

  84. Hill JAWD, Ichim TE, Min WP: A novel mechanism of immune modulation through the use of small interering RNA. Arthritis Rheum 2002;46:S563.

    Article  Google Scholar 

  85. Kohka H, Iwagaki H, Yoshino T, et al.: Involvement of interleukin-18 (IL-18) in mixed lymphocyte reactions (MLR). J Interferon Cytokine Res 1999;19:1053–1057.

    Article  PubMed  CAS  Google Scholar 

  86. Trinchieri G: Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv Immunol 1998;70:83–243.

    Article  PubMed  CAS  Google Scholar 

  87. Laderach D, Compagno D, Danos O, et al.: RNA interference shows critical requirement for NF-kappaB p50 in the production of IL-12 by human dendritic cells. J Immunol 2003;171:1750–1757.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Qian, H., Ichim, T.E. et al. Induction of RNA interference in dendritic cells. Immunol Res 30, 215–230 (2004). https://doi.org/10.1385/IR:30:2:215

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:30:2:215

Key Words

Navigation