Skip to main content
Log in

The vav family

At the crossroads of signaling pathways

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The Vav family of Rho-guanine nucleotide exchange factors (GEFs) is thought to control a diverse array of signaling pathways emanating from antigen receptors in lymphocytes, although the exact mechanism by which Vav exerts its function is only beginning to emerge. Vav proteins are modular and contain the Dbl-homology domain, typical of all known Rho-GEFs, in addition to several other structural domains characteristic of proteins involved in signal transduction. Recently, our laboratory generated mice congenitally lacking all three Vav isoforms, providing genetic evidence that the Vav family is critical and nonredundant in T-and B-lymphocyte development and function and is essential in the formation of the adaptive immune system. These experimental also demonstrated that Vav proteins are indispensable for both T-cell receptor—and B-cell receptr-induced Ca++ fluxes. However, detailed analyses of Vav-deficient mice revealed unexpected complexity of Vav involvement in cellular activation. Notably, we observed lineage-specific Vav regulation of mitogen-activated protein kinase signaling, in which Vav was required in T-cell, but not in B-cells. Moreover, the three Vav proteins appear to function specifically in distinct signaling pathways emanating from activating receptors of natural killer cells that trigger natural cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bassing CH, Swat W, Alt FW: The mechanism and regulation of chromosomal V(D)J recobination. Cell 2002;109:S45-S55.

    Article  PubMed  CAS  Google Scholar 

  2. Borowski C, et al.: On the brink of becoming a T cell. Curr Opin Immunol 2002;14:200–206.

    Article  PubMed  CAS  Google Scholar 

  3. Swat W, et al.: Activated Ras signals differentiation and expansion of CD4+8+ thymocytes. Proc Natl Acad Sci USA 1996;93:4683–4687.

    Article  PubMed  CAS  Google Scholar 

  4. Crompton T, Gilmour KC, Owen MJ: The MAP kinase pathway controls differentiation from double-negative to double-positive thymocyte. Cell 1996;86:243–251

    Article  PubMed  CAS  Google Scholar 

  5. Gartner F, et al.: Immature thymocytes employ distinct signaling pathways for allelic exclusion versus differentiation and expansion. Immunity 1999;10:537–546.

    Article  PubMed  CAS  Google Scholar 

  6. Iritani BM, et al.: Distinct signals mediate maturation and allelic exclusion in lymphocyte progenitors. Immunity 1999;10:713–722.

    Article  PubMed  CAS  Google Scholar 

  7. Aifantis I, et al: Constitutive pre-TCR signaling promotes differentiation through Ca2+ mobilization and activation of NF-kappaB and NFAT. Nat Immunol 2001;2:403–409.

    PubMed  CAS  Google Scholar 

  8. Iritani BM, et al.: Control of B cell development by Ras-mediated activation of Raf. EMBO J 1997;16:7019–7031

    Article  PubMed  CAS  Google Scholar 

  9. Shaw AC, et al.: Induction of Ig light chain gene rearrangement in heavy chain-deficient B cells by activated Ras. Proc Natl Acad Sci USA 1999;96:2239–2243.

    Article  PubMed  CAS  Google Scholar 

  10. Shaw AC, et al.: Activated Ras signals developmental progression of recombinase-activating gene (RAG)—deficient pro-B lympocytes. J Exp Med 1999;189:123–129.

    Article  PubMed  CAS  Google Scholar 

  11. Kane LP, Lin J, Weiss A: Signal transduction by the TCR for antigen. Curr Opin Immunol 2000;12:242–249.

    Article  PubMed  CAS  Google Scholar 

  12. Acuto O, Cantrell D: T cell activation and the cytoskeletion. Annu Rev Immunol 2000;18:165–184.

    Article  PubMed  CAS  Google Scholar 

  13. DeFranco AL: B-cell activation 2000. Immunol Rev 2000;176:5–9.

    PubMed  CAS  Google Scholar 

  14. Gauld SB, Dal Porto JM, Cambier JC: B cell antigen receptor signaling: roles in cell development and disease. Science 2000;296:1641, 1642.

    Article  Google Scholar 

  15. Samelson LE: Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu Rev Immunol 2002;20:371–394.

    Article  PubMed  CAS  Google Scholar 

  16. Koretzky GA, Myung PS: Positive and negative regulation of T-cell activation by adaptor proteins. Nat Rev Immunol 2001;1:95–107.

    Article  PubMed  CAS  Google Scholar 

  17. Bustelo XR: Vav proteins, adaptors and cell signaling. Oncogene 2001;20:6372–6381.

    Article  PubMed  CAS  Google Scholar 

  18. Turner M, Billadeau DD: VAV proteins as signal integrators for multi-subunit immune-recognition receptors. Nat Rev Immunol 2002;2:476–486.

    Article  PubMed  CAS  Google Scholar 

  19. Tomlinson MG, Lin J, Weiss A: Lymphocytes with a complex: adapter proteins in antigen receptor signaling. Immunol Today 2000;21:584–591.

    Article  PubMed  CAS  Google Scholar 

  20. Miletic AV, et al.: Cytoskeletal remodeling in lymphocyte activation. Curr Opin Immunol 2003;15:261–268.

    Article  PubMed  CAS  Google Scholar 

  21. Pizzo P, Viola A: Lymphocyte lipid rafts: structure and function. Curr Opin Immunol 2003;15:255–260.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang W, et al.: Functional analysis of LAT in TCR-mediated signaling pathways using a LAT-deficient Jurkat cell line. Int Immunol 1999;11:943–950.

    Article  PubMed  CAS  Google Scholar 

  23. Bromley SK, et al.: The immunological synapse. Annu Rev Immunol 2001;19:375–396.

    Article  PubMed  CAS  Google Scholar 

  24. Dustin ML, Cooper JA: The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat Immunol 2000;1:23–29.

    Article  PubMed  CAS  Google Scholar 

  25. Grakoui A, et al.: The immunological synapse: a molecular machine controlling T cell activation. Science 1999;285:221–227.

    Article  PubMed  CAS  Google Scholar 

  26. Monks CR, et al: Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 1998;395:82–86.

    Article  PubMed  CAS  Google Scholar 

  27. Lee KH, et al: T cell receptor signaling procedes immunological synapse formation. Science 2002;295:1539–1542.

    Article  PubMed  CAS  Google Scholar 

  28. Fujikawa K, et al: Vav1/2/3-null mice define an essential role for Vav family proteins in lymphocyte development and activation but a differential requirement in MAPK signaling in T and B cells. J Exp Med 2003;198:1595–1608.

    Article  PubMed  CAS  Google Scholar 

  29. Etienne-Manneville S, Hall A: Rho GTPases in cell biology. Nature 2002;420:629–635.

    Article  PubMed  CAS  Google Scholar 

  30. Bustelo XR, Ledbetter JA, Barbacid M: Product of vav proto-oncogene defines a new class of tyrosine protein kinase substrates. Nature 1992;356:68–71.

    Article  PubMed  CAS  Google Scholar 

  31. Margolis B, et al: Tyrosine phosphorylation of vav proto-oncogene product containing SH2 domain and transcription factor motifs. Nature 1992;356:71–74.

    Article  PubMed  CAS  Google Scholar 

  32. Movilla N, Bustelo XR: Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Mol Cell Biol 1999;19:7870–7885.

    PubMed  CAS  Google Scholar 

  33. Moores SL, et al: Vav family proteins couple to diverse cell surface receptors. Mol Cell Biol 2000;20:6364–6373.

    Article  PubMed  CAS  Google Scholar 

  34. Fujikawa K, et al: Vav3 is regulated during the cell cycle and effects cell division. Proc Natl Acad Sci USA 2002;99:4313–4318.

    Article  PubMed  CAS  Google Scholar 

  35. Aghazadeh B, et al: Structural basis for relief of autoin-hibition of the Dbl homology domain of proto-oncogene Vav by tyrosine phosphorylation. Cell 2000;102:625–633.

    Article  PubMed  CAS  Google Scholar 

  36. Kuhne MR, Ku G, Weiss A. A guanine nucleotide exchange factor-independent function of Vav 1 in transcriptional activation. J Biol Chem 2000;275:2185–2190.

    Article  PubMed  CAS  Google Scholar 

  37. Han J, et al: Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 1998;279:558–560.

    Article  PubMed  CAS  Google Scholar 

  38. Han J, et al: Lck regulates Vav activation of members of the Rho family of GTPases. Mol Cell Biol 1997;17:1346–1353.

    PubMed  CAS  Google Scholar 

  39. Zhang R, et al: Defective signalling through the T-and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature 1995;374:470–473.

    Article  PubMed  CAS  Google Scholar 

  40. Tarakhovsky A, et al: Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature 1995;374:467–470.

    Article  PubMed  CAS  Google Scholar 

  41. Fischer KD, et al: Defective T-cell receptor signalling and positive selection of Vav- deficient CD4 CD8+ thymocytes. Nature 1995;374:474–477.

    Article  PubMed  CAS  Google Scholar 

  42. Swat W, et al: Essential role for Vav1 in activation, but not development, of gammadelta T cells. Int Immunol 2003;15:215–221.

    Article  PubMed  CAS  Google Scholar 

  43. Holsinger LJ, et al: Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Curr Biol 1998;8:563–572.

    Article  PubMed  CAS  Google Scholar 

  44. Doody GM, et al: Signal transduction through Vav-2 participates in humoral immune responses and B cell maturation. Nat Immunol 2001;2:542–547.

    Article  PubMed  CAS  Google Scholar 

  45. Tedford K, et al: Compensation between Vav-1 and Vav-2 in B cell development and antigen receptor signaling. Nat Immunol 2001;2:548–555.

    Article  PubMed  CAS  Google Scholar 

  46. Inabe K, et al: Vav 3 modulates B cell receptor responses by regulating phosphoinositide 3-kinase activation. J Exp Med 2002;195:189–200.

    Article  PubMed  CAS  Google Scholar 

  47. Reynolds LF, et al: Vav1 transduces T cell receptor signals to the activation of the Ras/ERK pathway via LAT, Sos, and RasGRP1. J Biol Chem 2004;279:18,239–18,246.

    CAS  Google Scholar 

  48. Reynolds LF, et al: Vav1 transduces T cell receptor signals to the activation of phospholipase C-gammal via phosphoinositide 3-kinase-dependent and-independent pathways. J Exp Med 2002;195:1103–1114.

    Article  PubMed  CAS  Google Scholar 

  49. Dower NA, et al: RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nat Immunol 2000;1:317–321.

    Article  PubMed  CAS  Google Scholar 

  50. Gong Q, et al: Disruption of T cell signaling networks and development by Grb2 haploid insufficiency. Nat Immunol 2001;2:29–36.

    Article  PubMed  CAS  Google Scholar 

  51. Raulet DH: Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 2003;3:781–790.

    Article  PubMed  CAS  Google Scholar 

  52. Cerwenka A, Lanier LL: Natural killer cells, viruses and cancer. Nat Rev Immunol 2001;1:41–49.

    Article  PubMed  CAS  Google Scholar 

  53. Perussia B: Signaling for cytotoxicity. Nat Immunol 2000;1:372–374.

    Article  PubMed  CAS  Google Scholar 

  54. Cella M, et al: Differential requirements for Vav proteins in DAP10- and ITAM-mediated NK cell cytotoxicity. J Exp Med 2004;200:817–823.

    Article  PubMed  CAS  Google Scholar 

  55. Gakidis MA, et al: Vav GEFs are required for beta2 integrin-dependent functions of neutrophils. J Cell Biol 2004;166:273–282.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swat, W., Fujikawa, K. The vav family. Immunol Res 32, 259–265 (2005). https://doi.org/10.1385/IR:32:1-3:259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:32:1-3:259

Key Words

Navigation