Skip to main content
Log in

The role of invariant natural killer T cells in lupus and atherogenesis

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is increasingly recognized as a risk factor for the development of premature atherosclerosis. The inflammatory process in both of these diseases is controlled by a variety of cell types of the innate and adaptive immune systems. Recent studies from several groups, including ours, have revealed a critical role of a unique subset of lymphocytes, termed invariant natural killer T (iNKT) cells, in the development of lupus-like autoimmunity and atheroslerosis in animal models. iNKT cells appear to play complex and divergent roles in the development of SLE and atherosclerosis. Our findings suggest that alterations in iNKT cell functions during the development of SLE may be related to the increased risk of SLE patients to develop atherosclerosis and coronary heart disease. We found that iNKT cell activation with the sponge-derived glycolipid α-galactosylceramide generally protects against the development of lupus-like autoimmunity in nice, whereas it exacerbates atherosclerosis. Therefore, while our studies have identified iNKT cells as potential therapeutic targets for SLE, further studies are necessary to design drugs that will avoid the underlying harmful effects of iNKT cell activation on the development of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Binder CJ, Chang MK, Shaw PX, et al.: Innate and acquired immunity in atherogenesis. Nat Med 2002; 8: 1218–1226.

    Article  PubMed  CAS  Google Scholar 

  2. Wick G, Knoflach M, Xu Q: Autoimmune and inflammatory mechanisms in atherosclerosis. Annu Rev Immunol 2004; 22: 361–403.

    Article  PubMed  CAS  Google Scholar 

  3. Lockshin MD, Salmon JE, Roman MJ: Atherosclerosis and lupus: a work in progress. Arthritis Rheum 2001; 44: 2215–2217.

    Article  PubMed  CAS  Google Scholar 

  4. Bendelac A, Rivera MN, Park SH, Roark JH: Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 1997; 15: 535–562.

    Article  PubMed  CAS  Google Scholar 

  5. Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H: The regulatory role of Vα14 NKT cells in innate and acquired immune response. Annu Rev Immunol 2003; 21: 483–531.

    Article  PubMed  CAS  Google Scholar 

  6. Van Kaer L: Regulation of immune responses by CD1d-restricted natural killer T cells. Immunol Res 2004; 30: 139–153.

    Article  PubMed  Google Scholar 

  7. Brigl M, Brenner MB: CD1: antigen presentation and T cell function. Annu Rev Immunol 2004; 22: 817–890.

    Article  PubMed  CAS  Google Scholar 

  8. Godfrey DI, Kronenberg M: Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 2004; 114: 1379–1388.

    Article  PubMed  CAS  Google Scholar 

  9. Kronenberg M: Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 2005; 26: 877–900.

    Article  Google Scholar 

  10. Bezbradica JS, Joyce S: Natural T lymphocytes and dendritic cells: an innate duet that arouses and tempers immune responses; in Gorczynski RM (ed): Altered Immunoregulation, and Human Disease, Trivandrum, Kerala, India. Research Signpost 2005, pp. 137–163.

    Google Scholar 

  11. Kawano T, Cui J, Koezuka Y, et al.: CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 1997; 278: 1626–1629.

    Article  PubMed  CAS  Google Scholar 

  12. Gumperz JE, Roy C, Makowska A, et al.: Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 2000; 12: 211–221.

    Article  PubMed  CAS  Google Scholar 

  13. Wu DY, Segal NH, Sidobre S, Kronenberg M, Chapman PB: Cross-presentation of disialoganglioside GD3 to natural killer T cells. J Exp Med 2003;198:173–181.

    Article  PubMed  CAS  Google Scholar 

  14. Fischer K, Scotet E, Niemeyer M, et al: Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci USA 2004; 101:10685–10690.

    Article  PubMed  CAS  Google Scholar 

  15. Amprey JL, Im JS, Turco SJ, et al: A subset of liver NK T cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan. J Exp Med 2004; 200:895–904.

    Article  PubMed  CAS  Google Scholar 

  16. Stanic AK, De silva AD, Park JJ, et al: Defective presentation of the CD1d1-restricted natural Va14Ja18 NKT lymphocyte antigen caused by β-D-glucosylceramide synthase deficiency. Proc Natl Acad Sci USA 2003;100:1849–1854.

    Article  PubMed  CAS  Google Scholar 

  17. Zhou D, Mattner J, Cantu C, et al: Lysosomal glycophin-golipid recognition by NKT cells. Science 2004;306:1786–1789.

    Article  PubMed  CAS  Google Scholar 

  18. Mattner J, DeBord KL, Ismail N, et al: Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 2005;434:525–529.

    Article  PubMed  CAS  Google Scholar 

  19. Kinjo Y, Wu DY, Kim G, et al: Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 2005;434:520–525.

    Article  PubMed  CAS  Google Scholar 

  20. Sriram V, Du W, Gervay-Hague J, Brutkiewicz RR: Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligand for NKT cells. Eur J Immunol 2005;35:1692–1701.

    Article  PubMed  CAS  Google Scholar 

  21. Van Kaer L, Joyce S: Innate immunity: NKT cells in the spotlight. Curr Biol 2005;15:R429-R431.

    Article  PubMed  Google Scholar 

  22. Joyce S, Woods AS, Yewdell JW, et al: Natural ligand of mouse CD1d1; cellular glycosylphosphatidylinositol. Science 1998;279:1541–1544.

    Article  PubMed  CAS  Google Scholar 

  23. Park J-J, Kang SJ, De Silva AD, et al: Lipid-protein interactions: biosynthetic assembly of CD1 with lipids in the endoplasmic reticulum is evolutionarily conserved. Proc Natl Acad Sci USA 2004;101:1022–1026.

    Article  PubMed  CAS  Google Scholar 

  24. De Silva AD, Park JJ, Matsuki N, et al: Lipid protein interactions: the assembly of CD1d1 with cellular phospholipids occurs in the endoplasmic reticulum. J Immunol 2002;168:723–733.

    PubMed  Google Scholar 

  25. Brozovic S, Nagaishi T, Yoshida M, et al: CD1d function is regulated by microsomal triglyceride transfer protein. Nat Med 2004;10:535–539.

    Article  PubMed  CAS  Google Scholar 

  26. Dougan SK, Salas A, Rava P, et al: Microsomal triglyceride transfer protein lipidation and control of CD1d on antigen-presenting cells. J Exp Med 2005;202:529–539.

    Article  PubMed  CAS  Google Scholar 

  27. Kang SJ, Cresswell P: Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells. Nat Immunol 2004;5:175–181.

    Article  PubMed  CAS  Google Scholar 

  28. Zhou D, Cantu Cr, Sagiv Y, et al: Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 2004;303:523–527.

    Article  PubMed  CAS  Google Scholar 

  29. van den Elzen P, Garg S, Leon L, et al: Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 2005;437:906–910.

    Article  PubMed  Google Scholar 

  30. Prigozy TI, Naidenko O, Qasba P, et al: Glycolipid antigen processing for presentation by CD1d molecules. Science 2001;291:664–667.

    Article  PubMed  CAS  Google Scholar 

  31. Kobayashi E., Motoki K, Uchida T, Fukushima H, Koezuka Y: KRN7000, a novel immunomodulator, and its antitumor activities. Oncol Res 1995;7:529–534.

    PubMed  CAS  Google Scholar 

  32. Bezbradica JS, Stanic AK, Matsuki N, et al: Distinct roles of dendritic cells and B cells in Va14Ja18 natural T cell activation in vivo. J Immunol 2005;174:4694–4705.

    Google Scholar 

  33. Schmieg J, Yang G, Franck RW, Van Rooijen N, Tsuji M: Glycolipid presentation to natural killer T cells differs in an organ-dependent fashion. Proc Natl Acad Sci USA 2005;102:1127–1132.

    Article  PubMed  CAS  Google Scholar 

  34. Eberl G, MacDonald HR: Rapid death and regeneration of NKT cells in anti-CD3epsilon- or IL-12-treated mice: a major role for bone marrow in NKT cell homeostasis. Immunity 1998;9:345–353.

    Article  PubMed  CAS  Google Scholar 

  35. Eberl G, MacDonald HR: Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol 2000;30:985–992.

    Article  PubMed  CAS  Google Scholar 

  36. Leite-de-Moraes MC, Herbelin A, Gouarin C, Koezuka Y, Schneider E, Dy M: Fas/Fas ligand interactions promote activation-induced cell death of NK T lymphocytes. J Immunol 2000;165:4367–4371.

    PubMed  CAS  Google Scholar 

  37. Wilson MT, Johansson C, Olivares-Villagomez D, et al: The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc Natl Acad Sci USA 2003; 100:10913–10918.

    Article  PubMed  CAS  Google Scholar 

  38. Parekh VV, Singh AK, Wilson MT, et al: Quantitative and qualitative differences in the in vivo response of NKT cells to distinct α- and β-anomeric glycolipids. J Immunol 2004;173:3693–3706.

    PubMed  CAS  Google Scholar 

  39. Singh N, Hong S, Scherer DC, et al: Cutting edge: Activation of NK T cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J Immunol 1999;163:2373–2377.

    PubMed  CAS  Google Scholar 

  40. Fujii S, Shimizu K, Kronenberg M, Steinman RM: Prolonged IFN-γ-producing NKT response induced with α-galactosylceramide-loaded DCs. Nat Immunol 2002;3: 867–874.

    Article  PubMed  CAS  Google Scholar 

  41. Matsuda JL, Gapin L, Baron JL, et al: Mouse Vα14i natural killer T cells are resistant to cytokine polarization in vivo. Proc Natl Acad Sci USA 2003;100:8395–8400.

    Article  PubMed  CAS  Google Scholar 

  42. Parekh VV, Wilson MT, Olivares-Villagomez D, et al: Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 2005;115:2572–2583.

    Article  PubMed  CAS  Google Scholar 

  43. Crowe NY, Uldrich AP, Kyparissoudis K, et al: Glycolipid antigen drives rapid expansion and sustained cytokine production by NKT cells. J Immunol 2003;171:4020–4027.

    PubMed  CAS  Google Scholar 

  44. Harada M, Seino KI, Wakao H, et al: Down-regulation of the invariant Vα14 antigen receptor in NKT cells upon activation. Int Immunol 2004;16:241–247.

    Article  PubMed  CAS  Google Scholar 

  45. Ulrich AP, Crowe NY, Kyparissoudis K, et al: NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion, bim-dependent contraction, and hyporesponsiveness to further antigenic challenge. J Immunol 2005;175:3092–3101.

    Google Scholar 

  46. Hong S, Wilson MT, Serizawa I, et al: The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat Med 2001; 7:1052–1056.

    Article  PubMed  CAS  Google Scholar 

  47. Singh AK, Wilson MT, Hong S, et al: Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J Exp Med 2001;194:1801–1811.

    Article  PubMed  CAS  Google Scholar 

  48. Singh AK, Yang J-Q, Parekh VV, et al: The natural killer T cell ligand α-galactosylceramide prevents or promotes pristance-induced lupus in mice. Eur J Immunol 2005;35:1143–1154.

    Article  PubMed  CAS  Google Scholar 

  49. Hayakawa Y, Berzins SP, Crowe NY, Godfrey DI, Smyth MJ: Antigen-induced tolerance by intrathymic modulation of self-recognizing inhibitory receptors. Nat Immunol 2004;5:590–596.

    Article  PubMed  CAS  Google Scholar 

  50. Van Kaer L: α-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat Rev Immunol 2005;5:31–42.

    Article  PubMed  Google Scholar 

  51. Cui J, Watanabe N, Kawano T, et al: Inhibition of T helper cell type 2 cell differentiation and immunoglobulin E response by ligand-activated Vα14 natural killer T cells. J Exp Med 1999;190:783–792.

    Article  PubMed  CAS  Google Scholar 

  52. Liu R, La Cava A, Bai X-F, et al: Cooperation of iNKT cells and CD4+CD25+ Treg cells in the prevention of autoimmune myasthenia. J Immunol 2005;175:7898–7904.

    PubMed  CAS  Google Scholar 

  53. Mars LT, Novak J, Liblau RS, Lehuen A: Therapeutic manipulation of iNKT cells in autoimmunity: modes of action and potential risks. Trends Immunol 2004;25:471–476.

    Article  PubMed  CAS  Google Scholar 

  54. Parekh VV, Wilson MT, Van Kaer L: INKT-cell responses to glycolipids. Crit Rev Immunol 2005;25:183–213.

    Article  PubMed  CAS  Google Scholar 

  55. Kotzin BL: Systemic lupus erythematosus. Cell 1996; 85:303–306.

    Article  PubMed  CAS  Google Scholar 

  56. Singh RR: SLE: translating lessons from model systems to human disease. Trends Immunol 2005;26:572–579.

    Article  PubMed  CAS  Google Scholar 

  57. Takeda k, Dennert G: The development of autoimmunity in C57BL/61pr mice correlates with the disappearance of natural killer type 1-positive cells: evidence for their suppressive action on bone marrow stem cell proliferation, B cell immunoglobulin secretion, and autoimmune symptoms. J Exp Med 1993;177:155–164.

    Article  PubMed  CAS  Google Scholar 

  58. Mieza MA, Itoh T, Cui JQ, et al: Selective reduction of Vα14+ NK T cells associated with disease development in autoimmune-prone mice. J Immunol 1996;156:4035–4040.

    PubMed  CAS  Google Scholar 

  59. Oishi Y, Sumida T, Sakamoto A, et al: Selective reduction and recovery of invariant Vα24JαQ T cell receptor T cells in correlation with disease activity in patients with systemic lupus erythematosus. J Rheumatol 2001;28:275–283.

    PubMed  CAS  Google Scholar 

  60. van der Vliet HJ, von Blomberg BM, Nishi N, et al: Circulating Vα24+Vβ11+ NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin Immunol 2001;100:144–148.

    Article  PubMed  Google Scholar 

  61. Kojo S, Adachi Y, Keino H, Taniguchi M, Sumida T: Dysfunction of T cell receptor AV24AJ18+, BV11+ double-negative regulatory natural killer T cells in autoimmune disease. Arthritis Rheum 2001;44:1127–1138.

    Article  PubMed  CAS  Google Scholar 

  62. Yang J-Q, Saxena V, Xu H, Van Kaer L, Wang CR, Singh RR: Repeated α-galactosylceramide administration results in expansion of Vα14 NKT cells and alleviates inflammatory dermatitis in MRL-lpr/lpr mice. J Immunol 2003;171:4439–4446.

    PubMed  CAS  Google Scholar 

  63. Yang JQ, Chun T, Liu H, et al: CD1d deficiency exacer-bates inflammatory dermatitis in MRL-lpr/lpr mice. Eur J Immunol 2004;34:1723–1732.

    Article  PubMed  CAS  Google Scholar 

  64. Forestier C, Molano A, Im JS, et al: Expansion and hyperactivity of CD1d-restricted NKT cells during the progression of systemic lupus erythematosus in (New Zealand Black x New Zealand White)F1 mice. J Immunol 2005;175:1763–770.

    Google Scholar 

  65. Zeng D, Liu Y, Sidobre S, Kronenberg M, Strober S: Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus. J Clin Invest 2003;112:1211–1222.

    Article  PubMed  CAS  Google Scholar 

  66. Yang JQ, Singh AK, Wilson MT, et al: Immunoregulatory role of CD1d in the hydrocarbon oil-induced model of lupus nephritis. J Immunol 2003;171:2142–2153.

    PubMed  CAS  Google Scholar 

  67. Yoshimoto T, Bendelac A, Hu-Li J, Paul WE: Defective IgE production by SJL mice is linked to the absence of CD4+, NK1.1+ T cells that promptly produce interleukin 4. Proc Natl Acad Sci USA 1995;92:11931–11934.

    Article  PubMed  CAS  Google Scholar 

  68. Garner B, Priestman DA, Stocker R, Harvey DJ, Butters TD, Platt FM: Increased glycosphingolipid levels in serum and aortae of apolipoprotein E gene knockout mice. J Lipid Res 2002;43:205–214.

    PubMed  CAS  Google Scholar 

  69. Mukhin DN, Chao FF, Kruth HS: Glycosphingolipid accumulation in the aortic wall is another feature of human atherosclerosis. Arterioscl Thromb Vasc Biol 1995;15:1607–1615.

    PubMed  CAS  Google Scholar 

  70. Melian A, Geng YJ, Sukhova GK, Libby P, Porcelli S: CD1 expression in human atherosclerosis. A potential mechanism for T cell activation by foam cells. Am J Pathol 1999;155:775–786.

    PubMed  CAS  Google Scholar 

  71. Chan WL, Pejnovic N, Hamilton H, et al: Atherosclerotic abdominal aortic aneurysm and the interaction between autologous human plaque-derived vascular smooth muscle cells, type 1 NKT, and helper T cells. Circ Res 2005;96:675–683.

    Article  PubMed  CAS  Google Scholar 

  72. Bobryshev YV, Lord RS: Expression of heat shock protein-70 by dendritic cells in the arterial intima and its potential significance in atherogenesis. J Vasc Surg 2002;35:368–375.

    Article  PubMed  Google Scholar 

  73. Breslow JL: Mouse models of atherosclerosis. Science 1996;272:685–688.

    Article  PubMed  CAS  Google Scholar 

  74. Major AS, Wilson MT, McCaleb JL, et al: Quantitative and qualitative differences in proatherogenic NKT cells in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2004;24:2351–2357.

    Article  PubMed  CAS  Google Scholar 

  75. Nakai Y, Iwabuchi K, Fujii S, et al: Natural killer T cells accelerate atherogenesis in mice. Blood 2004;104: 2051–2059.

    Article  PubMed  CAS  Google Scholar 

  76. Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB: Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 2003;4:1230–1237.

    Article  PubMed  CAS  Google Scholar 

  77. Ostos MA, Recalde D, Zakin MM, Scott-Algara D: Implication of natural killer T cells in atherosclerosis development during a LPS-induced chronic inflammation. FEBS Lett 2002;519:23–29.

    Article  PubMed  CAS  Google Scholar 

  78. Major AS, Van Kaer L: The role of natural killer T cells in atherosclerosis. Curr Immunol Rev 2005;1:261–274.

    Article  CAS  Google Scholar 

  79. Tupin E, Nicoletti A, Elhage R, et al: CD1d-dependent activation of NKT cells aggravates atherosclerosis. J Exp Med 2004;199:417–422.

    Article  PubMed  CAS  Google Scholar 

  80. Aslanian AM, Chapman HA, Charo IF: Transient role for CD1d-restricted natural killer T cells in the formation of atherosclerotic lesions. Arterioscl Thromb Vasc Biol 2005;25:628–632.

    Article  PubMed  CAS  Google Scholar 

  81. King VL, Szilvassy SJ, Daugherty A: Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arterioscler Thromb Vasc Biol 2002;22:456–461.

    Article  PubMed  CAS  Google Scholar 

  82. Davenport P, Tipping PG: The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol 2003; 163:1117–1125.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amy S. Major or Luc Van Kaer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Major, A.S., Singh, R.R., Joyce, S. et al. The role of invariant natural killer T cells in lupus and atherogenesis. Immunol Res 34, 49–66 (2006). https://doi.org/10.1385/IR:34:1:49

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:34:1:49

Key Words

Navigation