Skip to main content
Log in

Kalirin expression is regulated by multiple promoters

  • Peptide Secretion
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Kalirin is a multidomain guanine nucleotide exchange factor for small GTP binding proteins of the Rho family. It is expressed in multiple isoforms that contain different combinations of functional domains and display a complex pattern of expression during brain development. In addition to the isoforms generated through alternative splicing, we have identified multiple transcriptional start sites in rats and humans. These multiple transcriptional start sites result in full-length Kalirin transcripts possessing different 5′ ends encoding proteins with differing amino termini. These alternative first exons display different patterns of expression in developing rats and humans and in cultured cells. Most of these alternate first exons lie >100 kb upstream of exon 2 in both rats and humans. Comparisons of the rat and human Kalirin promoter regions reveal numerous shared potential regulatory elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alam, M. R., Johnson, R. C., Darlington, D. N., Hand, T. A., Mains, R. E., and Eippe, B. A. (1997) Kalirin, a cytosolic protein with Spectrin-like and GDP/GTP exchange factor-like domains that interacts with Peptidylglycine α-amidating Monooxygenase, an integral membrane peptide-processing enzyme. J. Biol. Chem. 272, 12667–12675.

    Article  PubMed  CAS  Google Scholar 

  • Amalfitano, A., Rafael, J. A., and Chamberlain, J. S. (1997) Structure and mutation of the dystrophin gene, in Dystrophin: Gene, Protein, and Cell Biology, Cambridge University Press, Cambridge, U.K., pp. 1–26.

    Google Scholar 

  • Aparicio, S., Chapman, J., Stupka, E., et al. (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297, 1301–1310.

    Article  PubMed  CAS  Google Scholar 

  • Awasaki, T., Saito, M., Sone, M., et al. (2000) The Drosophila Trio plays an essential role in patterning of axons by regulating their directional extension. Neuron 26, 119–131.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, T. M. and Elkan, C. (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers, in Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, AAAI, Menlo Park, CA, pp. 28–36.

    Google Scholar 

  • Bateman, J. and Van Vactor, D. (2001) The Trio family of guanine-nucleotide-exchange factors: regulators of axon guidance. J. Cell. Sci. 114, 1973–1980.

    PubMed  CAS  Google Scholar 

  • Bateman, J., Shu, H., and Van Vactor, D. (2000) The guanine nucleotide exchange factor Trio mediates axonal development in the Drosophila embryo. Neuron 26, 93–106.

    Article  PubMed  CAS  Google Scholar 

  • Benachenhou, N., Massy, I., and Vacher, J. (2002) Characterization and expression analyses of the mouse Wiskott-Aldrich syndrome protein (WASP) family member Wave1/Scar. Gene 290, 131–140.

    Article  PubMed  CAS  Google Scholar 

  • Colomer, V., Engeleander, S., Sharp, A. H., et al. (1997) Huntingtin-associated protein 1 (HAP1) binds to a Triolike polypeptide, with a rac1 guanine nucleotide exchange factor domain. Hum. Mol. Genet. 6, 1519–1525.

    Article  PubMed  CAS  Google Scholar 

  • Debant, A., Serra-Pages, C., Seipel, K., et al. (1996) The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factors. Proc. Natl. Acad. Sci. USA 93, 5466–5471.

    Article  PubMed  CAS  Google Scholar 

  • Gorecki, D. C., Monaco, A. P., Derry, J. M. J., Walker, A. P., Barnard, E. A., and Barnard, P. J. (1992) Expression of four alternative dystrophin transcripts in brain regions regulated by different promoters. Hum. Mol. Genet. 1, 505–510.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, R. C., Penzes, P., Eipper, B. A., and Mains, R. E. (2000) Isoforms of Kalirin, a neuronal Db1 family member, generated through the use of different 5′- and 3′-ends along with an internal translational initiation site. J. Biol. Chem. 275, 19324–19333.

    Article  PubMed  CAS  Google Scholar 

  • Lagutin, O. V., Zhu, C. C., Kobayashi, D., et al. (2003) Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev. 17, 368–379.

    Article  PubMed  CAS  Google Scholar 

  • Lau, F., Aldabe, R., Friedrich, V., Ohnishi, S., Yoshida, T., and Ramirez, F. (2001) Developmental expression of mouse Kruppel-like transcription factor KLF7 suggests a potential role in neurogenesis. Dev. Biol. 233, 305–318.

    Article  Google Scholar 

  • Lei, L., Ma, L., Nef, S., Thai, T., and Parada, L. F. (2001) MK1f7, a potential transcriptional regulator of TrkA nerve growth factor receptor expression in sensory and sympathetic neurons. Development 128, 1147–1158.

    PubMed  CAS  Google Scholar 

  • Liebl, E. C., Forsthoefel, D. J., Franco L. S., et al. (2000) Dosage-sensitive, reciprocal genetic interactions between the Abl tyrosine kinase and the putative GEF trio reveal trio’s role in axon pathfinding. Neuron 26, 107–118.

    Article  PubMed  CAS  Google Scholar 

  • Luu, L., Ramshaw, H., Tahayato, A., Stuart, A., Jones, G., White, J., and Petkovich, M. (2001) Regulation of retinoic acid metabolism. Adv. Enzyme Regul. 41, 159–175.

    Article  PubMed  CAS  Google Scholar 

  • Ma, X.-M., Johnson, R. C., Mains, R. E., and Eipper, B. A. (2001) Expression of Kalirin, a neuronal GDP/GTP exchange factor of the Trio family, in the central nervous system of the adult rat. J. Comp. Neurol. 429, 388–402.

    Article  PubMed  CAS  Google Scholar 

  • Ma, X.-M., Mains, R. E., and Eipper, B. A. (2002) Plasticity in hippocampal peptidergic systems induced by repeated electroconvulsive shock. Neuropsychopharmacology 27, 55–71.

    Article  PubMed  CAS  Google Scholar 

  • Maekawa, M., Ishikazi, T., Boku, S., et al. (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895–898.

    Article  PubMed  CAS  Google Scholar 

  • May, V., Schiller, M. R., Eipper, B. A., and Mains, R. E. (2002) Kalirin Dbl-homology guanine nucleotide exchange factor 1 domain initiates new axon outgrowths via RhoG-mediated mechanisms. J. Neurosci. 22, 6980–6990.

    PubMed  CAS  Google Scholar 

  • McPherson, C. E., Eipper, E. A., and Mains, R. E. (2002) Genomic organization and differential expression of Kalirin isoforms. Gene 284, 41–51.

    Article  PubMed  CAS  Google Scholar 

  • Nomoto, S., Tatematsu, Y., Takahashi, T., and Osada, H. (1999) Cloning and characterization of the alternative promoter regions of the human LIMK2 gene responsible for alternative transcripts with tissue-specific expression. Gene 236, 259–271.

    Article  PubMed  CAS  Google Scholar 

  • Pahlman, S., Hoehner, J. C., Nanberg, E., et al. (1995) Differentiation and survival influences of growth factors in human neuroblastoma. Eur. J. Cancer 31A, 453–458.

    Article  PubMed  CAS  Google Scholar 

  • Pahlman, S., Mamaeva, S., Meyerson, G., et al. (1990) Human neuroblastoma cells in culture: a model for neuronal cell differentiation and function. Acta Physiol. Scand. Suppl. 592, 25–37.

    PubMed  CAS  Google Scholar 

  • Pozzoli, U., Elgar, G., Cagliani, R., et al. (2003) Comparative analysis of vertebrate dystrophin loci indicate intron gigantism as a common feature. Genome Res. 13, 764–772.

    Article  PubMed  CAS  Google Scholar 

  • Seipel, K., Medle, Q. G., Kedersha, N. L., et al. (1999) Trio amino-terminal guanine nucleotide exchange factor domain expression promotes actin cytoskeleton reorganization, cell migration, and anchorage-dependent cell growth. J. Cell Sci. 112, 1825–1834.

    PubMed  CAS  Google Scholar 

  • Smale, S. T. (1994) Core promoter architecture for eukaryotic protein-coding genes, in Transcription: Mechanisms and Regulation, Conaway, R. C., and Conaway, J. W., eds., Raven, New York, pp. 63–81.

    Google Scholar 

  • Steven, R., Kubiseski, T. J., Zheng, H., et al. (1998) UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell 92, 785–795.

    Article  PubMed  CAS  Google Scholar 

  • Tatusova, T. A. and Madden, T. L. (1999) Blast 2 sequences—a new tool for comparing protein and nucleotide sequences. FEMS Microbiol. Lett. 174, 247–250.

    Article  PubMed  CAS  Google Scholar 

  • Van Der Burg, B., Sonneveld, E., Lemmen, J. G., and Van Der Saag, P. T. (1999) Morphogenetic action of retinoids and estrogens. Int. J. Dev. Biol. 43, 735–743.

    PubMed  Google Scholar 

  • Zhu, C. C., Dyer, M. A., Uchikawa, M., Kondoh, H., Lagutin, O. V., and Oliver, G. (2002) Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors. Development 129, 2835–2849.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Mains.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McPherson, C.E., Eipper, B.A. & Mains, R.E. Kalirin expression is regulated by multiple promoters. J Mol Neurosci 22, 51–62 (2004). https://doi.org/10.1385/JMN:22:1-2:51

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:22:1-2:51

Index Entries

Navigation