Skip to main content
Log in

Reporter gene vectors and assays

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Gene reporter systems play a key role in gene expression and regulation studies. This review describes the ideal reporter systems, including reporter expression vector design. It summarizes the many uses of genetic reporters and outlines the currently available and commonly used reporter systems. Each system is described in terms of the reporter gene, the protein it encodes, and the assays available for detecting presence of the reporter. In addition, each reporter system is analyzed in terms of its recommended uses, advantages, and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rosenthal, N. (1987) Identification of regulatory elements of cloned genes with functional assays. Meth. Enzym. 152, 704–720.

    PubMed  CAS  Google Scholar 

  2. Alam, J. and Cook, J. L. (1990) Reporter genes: application to the study of mammalian gene transcription. Anal. Biochem. 188, 245–254.

    PubMed  CAS  Google Scholar 

  3. Gorman, C. M., Moffat, L. F., and Howard, B. H. (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2, 1044–1051.

    PubMed  CAS  Google Scholar 

  4. Boshart, M., Kluppel, M., Schmidt, A., Schutz, G., and Luckow, B. (1992) Reporter constructs with low background activity utilizing the cat gene. Gene 110, 129–130.

    PubMed  CAS  Google Scholar 

  5. Kushner, P. J., Baxter, J. D., Duncan, K. G., Lopez, G. N., Schaufele, F., Uht, R. M., Webb P., and West, B. L. (1994) Eukaryotic regulatory elements lurking in plasmid DNA: The activator protein-1 site in pUC. Mol. Endo. 8, 405–407.

    CAS  Google Scholar 

  6. Berger, J., Hauber, J., Bauber, R., Geiger, R., and Cullen, B. (1988) Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66, 1–10.

    PubMed  CAS  Google Scholar 

  7. Sherf, B. A. and Wood, K. V. (1995) Firefly lucifierase engineered for improved genetic reporting. Promega Notes 49, 14–21.

    Google Scholar 

  8. Kozak, M. (1989) The scanning model for translation: an update. J. Cell. Biol. 108, 229–241.

    PubMed  CAS  Google Scholar 

  9. Bonin, A. L., Gossen M., and Bujard, H. (1994) Photinus pyralis luciferase: Vectors that contain a modified luc coding sequence allowing convenient transfer into other systems. Gene 141, 75–77.

    PubMed  CAS  Google Scholar 

  10. Henikoff, S. (1987) Unidirectional digestion with exonuclease III in DNA sequence analysis. Meth. Enzymol. 155, 156165.

    Google Scholar 

  11. Fu, L. N., Ye, R. Q., Browder, L. W., and Johnston, R. N. (1991) Translational potentiation of messenger RNA with secondary structure in Xenopus. Science 251, 807–810.

    PubMed  CAS  Google Scholar 

  12. Kim, S. J., Park, K., Koeller, D., Kim K. Y., Wakefield, L. M., Sporn, M. B., and Roberts, A. B. (1992) Post-transcriptional regulation of the human transforming growth factor- beta 1 gene. J. Biol. Chem. 267, 13,702–13,707.

    CAS  Google Scholar 

  13. Kozak, M. (1986) Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA 83, 2850–2854.

    PubMed  CAS  Google Scholar 

  14. Kozak, M. (1989) Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNA’s. Mol. Cell. Biol. 9, 5134–5142.

    PubMed  CAS  Google Scholar 

  15. Rao, C. D., Peck, M., Robbins, K. C., and Aaronson, S. A. (1988) The 5′ untranslated sequence of the c-sis/platelet-derived growth factor 2 transcript is a potent translational inhibitor. Mol. Cell. Biol. 8, 284–292.

    PubMed  CAS  Google Scholar 

  16. Kozak, M. (1984) Selection of initiation sites by eucaryotic ribosomes: effect of inserting AUG triplets upstream from the coding sequence of preproinsulin. Nucleic Acids Res. 12, 3873–3893.

    PubMed  CAS  Google Scholar 

  17. Liu, C., Simonsen, C. C., and Levinson, A. D. (1984) Initiation of translation at internal AUG codons in mammalian cells. Nature 309, 82–85.

    PubMed  CAS  Google Scholar 

  18. Bernstein, P. and Ross, J. (1989) Poly(A), poly(A) binding protein and the regulation of mRNA stability. Trends Biochem. Sci. 14, 373–377.

    PubMed  CAS  Google Scholar 

  19. Jackson, R. J. and Standart, N. (1990) Do the poly(A) tail and 3′ untranslated region control mRNA translation? Cell 62, 15–24.

    PubMed  CAS  Google Scholar 

  20. Proudfoot, N. J. (1991) Poly(A) signals. Cell 64, 671–674.

    PubMed  CAS  Google Scholar 

  21. Carswell, S. and Alwine, J. C. (1989) Efficiency of utilization of the Simian Virus 40 late polyadenylation site: Effects of upstream sequences. Mol. Cell. Biol. 9, 4248–4258.

    PubMed  CAS  Google Scholar 

  22. Pfarr, D. S., Rieser, L. A., Woychik, R. P., Rottman, F. M., Rosenberg, M., and Reff, M. E. Differential effects of polyadenylation regions on gene expression in mammalian cells. DNA 5, 115–122.

  23. Araki, E., Shimada, F., Shichiri, M., Mori, M., and Ebina, Y. (1988) pSV0CAT: Low background CAT plasmid. Nucl. Acids Res. 16, 1627–1630.

    PubMed  CAS  Google Scholar 

  24. Gross, M. K., Kainz, M. S., and Merrill, G. F. (1987) Introns are inconsequential to efficient formation of cellular thymidine kinase mRNA in mouse L cells. Mol. Cell. Biol. 7, 4576–4581.

    PubMed  CAS  Google Scholar 

  25. Buchman, A. R. and Berg, P. (1988) Comparison of intron-dependent and intron-independent gene expression. Mol. Cell. Biol. 8, 4395–4405.

    PubMed  CAS  Google Scholar 

  26. Evans, M. J. and Scarpulla, R. C. (1989) Introns in the 3′-untranslated region can inhibit chimeric CAT and β -galactosidase gene expression. Gene 84, 135–142.

    PubMed  CAS  Google Scholar 

  27. Huang, M. T. F. and Gorman, C. M. (1990) Intervening sequences increase the efficiency of RNA 3′ processing and accumulation of cytoplasmic RNA. Nucl. Acids Res. 18, 937–947.

    PubMed  CAS  Google Scholar 

  28. Huang, M. T. F. and Gorman, C. M. (1990) The Simian Virus 40 small-t intron, present in many common expression vectors, leads to aberrant splicing. Mol. Cell. Biol. 10, 1805–1810.

    PubMed  CAS  Google Scholar 

  29. Brondyk, B. (1995) pCI and pSI mammalian expression vectors. Promega Notes 49, 7–11.

    Google Scholar 

  30. Brinster, R. L., Allen, J. M., Behringer, R. R., Gelinas, R. E., and Palmiter, R. D. (1988) Introns increase transcriptional efficiency in transgenic mice. Proc. Natl. Acad. Sci. USA 85, 836–840.

    PubMed  CAS  Google Scholar 

  31. Choi, T., Huang, M., Gorman, C., and Jaenisch, R. A generic intron increases gene expression in transgenic mice. (1991) Mol. Cell. Biol. 11, 3070–3074.

    PubMed  CAS  Google Scholar 

  32. Palmiter, R. D., Sandgren, E. P., Avarbock, M. R., Allen, D. D., and Brinster, R. L. (1991) Heterologous introns can enhance expression of transgenes in mice. Proc. Natl. Acad. Sci. USA 88, 478–482.

    PubMed  CAS  Google Scholar 

  33. Dahler, A., Wade, R. P., Muscat, G. E. O., and Waters, M. J. (1994) Expression vectors encoding human growth hormone (hGH) controlled by human muscle-specific promoters: prospects for regulated production of hGH delivered by myoblast transfer or intravenous injection. Gene 145, 305–310.

    PubMed  CAS  Google Scholar 

  34. Wegner, R. H., Moreau, H., and Neilsen, P. J. (1994) A comparison of different promoter, enhancer, and cell type combinations in transient transfections. Anal. Biochem. 221, 416–418.

    Google Scholar 

  35. Koken, S. E., van Wamel, J., and Berkhout, B. (1994) A sensitive promoter assay based on the transcriptional activator Tat of the HIV-1 virus. Gene 144, 243–247.

    PubMed  CAS  Google Scholar 

  36. Himmler, A., Stratowa C., and Czernilofsky, A. P. (1993) Functional testing of human dopamine D1 and D5 receptors expressed in stable cAMP-responsive luciferase reporter cell lines. J. Recept. Res. 13, 79–94.

    PubMed  CAS  Google Scholar 

  37. Nagarajan, M. M. and Kibenge, F. S. (1998) A novel technique for in vivo assay of viral regulatory regions in genomes of animal RNA viruses. J. Virol. Methods 72, 51–58.

    PubMed  CAS  Google Scholar 

  38. Mehtali, M., Munschy, M., Ali-Hadji, D., and Kieny, M. D. (1992) A novel transgenic mouse model for the in vivo evaluation of anti-human immunodeficiency virus type1 drugs. AIDS-Res. Hum. Retroviruses 8, 1959–1965.

    PubMed  CAS  Google Scholar 

  39. Boerrigter, M. E. (1998) High sensitivity for color mutants in lacZ plasmid-based transgenic mice, as detected by positive selection. Environ. Mol. Mutagen. 32, 148–154.

    PubMed  CAS  Google Scholar 

  40. Chen, J., Kelz, M. B., Zeng, G., Sakai, N., Steffen, C., Shockett, P. E., Picciotto, M. R., Duman, R. S., and Nestler, E. J. (1998) Transgenic animals with inducible, targeted gene expression in brain. Mol. Pharmacol. 54, 495–503.

    PubMed  CAS  Google Scholar 

  41. Chien, C. T., Bartel, P. L., Sternglanz, R., and Fields, S. (1991) The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. 88, 9578–9582.

    PubMed  CAS  Google Scholar 

  42. Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245–246.

    PubMed  CAS  Google Scholar 

  43. Fearon, E. R., Finkel, T., Gillison, M. L., Kennedy, S. P., Casella, J. F., Tomaselli, G. F., Morrow, J. S., and Van-Dang, C. (1992) Karyoplasmic interaction selection strategy: A general strategy to detect protein-protein interactions in mammalian cells. Proc. Natl. Acad. Sci. 89, 7958–7962.

    PubMed  CAS  Google Scholar 

  44. Park, S. H. and Raines, R. T. (1997) Green fluorescent protein as a signal for protein-protein interactions. Protein Sci. 6, 2344–2349.

    PubMed  CAS  Google Scholar 

  45. Hollon, T. and Yoshimura, F. K. (1989) Variation in enzymatic transient gene expression assays. Anal. Biochem. 182, 411–418.

    PubMed  CAS  Google Scholar 

  46. Liptay, S., Weidenbach, H., Adler, G., and Schmid, R. M. (1998) Colon epithelium can be transiently transfected with liposomes, calcium phosphate precipitation and DEAE dextran in vivo. Digestion 59, 142–147.

    PubMed  CAS  Google Scholar 

  47. Harvie, P., Wong, F. M., and Bally, M. B. (1998) Characterization of lipid DNA interactions. I. Destabilization of bound lipids and DNA dissociation. Biophys. J. 75, 1040–1051.

    PubMed  CAS  Google Scholar 

  48. Kichler, A., Zauner, W., Ogris, M., and Wagner, E. (1998) Influence of the DNA complexation medium on the transfection efficiency of lipospermine/DNA particles. Gene Ther. 5, 855–860.

    PubMed  CAS  Google Scholar 

  49. Lopata, M. A., Cleveland, D. W., and Sollner-Webb, B. (1984) High level transient expression of a chloramphenicol gene by DEAE-dextran mediated DNA transfection coupled with a dimethyl sulfoxide or glycerol shock treatment. Nucl. Acids Res. 12, 5707–5717.

    PubMed  CAS  Google Scholar 

  50. Mittal, S. K., McDermott, M. R., Johnson, D. C., Prevec, L., and Graham, F. L. (1993) Monitoring foreign gene expression by a human adenovirus-based vector using the firefly luciferase gene as a reporter. Virus Res. 28, 67–90.

    PubMed  CAS  Google Scholar 

  51. Chen, B. K., Saksela, K., Andino, R., and Baltimore, D. (1994) Distinct modes of human immunodeficiency virus type 1 proviral latency revealed by superinfection of nonproductively infected cell lines with recombinant luciferase-encoding viruses. J. Virol. 68, 654–660.

    PubMed  CAS  Google Scholar 

  52. Martin, M. E., Nicholas, J., Thompson, B. J., Newman, C., and Honess, R. W. (1991) Identification of a transactivating function mapping to the putative immediate-early locus of human herpesvirus 6. J. Virol. 65, 5381–5390.

    PubMed  CAS  Google Scholar 

  53. Stabell, E. C., Rourke, S. R., Storch, G. A., and Olivo, P. D. (1993) Evaluation of a genetically engineered cell line and a histochemical beta-galactosidase assay to detect simplex virus in clinical specifimens. J. Clin. Microbiol. 31, 2796–2798.

    PubMed  CAS  Google Scholar 

  54. Plumpton, M., Sharp, N. A., Liddicoat, L. H., Remm, M., Tucker, D. O., Hughes, F. J., Russell, S. M., and Romanos, M. A. (1995) A high capacity assay for inhibitors of human pappillomavirus DNA replication. Biotechnology 13, 1210–1214.

    PubMed  CAS  Google Scholar 

  55. Herzing, L. B. K. and Meyn, M. S. (1993) Novel lacZ-based recombination vectors for mammalian cells. Gene 137, 163–169.

    PubMed  CAS  Google Scholar 

  56. Vile, R. G. and Hart, I. R. (1993) In vitro and in vivo targeting of gene expression to melanoma cells. Cancer Res. 53, 962–967.

    PubMed  CAS  Google Scholar 

  57. Huang, M. T. F. and Gorman, C. M. (1990) Intervening sequences increase efficiency of RNA 3′ processing and accumulation of cytoplasmic RNA. Nucl. Acids Res. 18, 937–947.

    PubMed  CAS  Google Scholar 

  58. Izaguirre, G. and Hansen, J. N. (1997) Use of alkaline phosphatase as a reporter polypeptide to study the role of the subtilin leader segment and the PlaT transporter in the posttranslational modifications and secretion of subtilin in Bacillus subtilis 168. Appl. Environ. Microbiol. 63, 3965–3971.

    PubMed  CAS  Google Scholar 

  59. Medema, R. H., de Laat, W. L., Martin, G. A., McCormick, F., and Bos, J. L. (1992) GTPase-activation protein SH2-SH3 domains induce gene expression in a Ras-dependent fashion. Mol. Cell. Biol. 12, 3425–3430.

    PubMed  CAS  Google Scholar 

  60. Sakoda, T., Kaibuchi, K., Kishi, K., Kishida, S., Doi, K., Hoshino, M., Hattori, S., and Takai, Y. (1992) smg/rap/Krev-1 p21s inhibit the signal pathway to the c-fos promoter/enhancer from c-Ki ras p21 but not from c-far-1 kinase in NIH3T3 cells. Oncogene 7, 1705–1711.

    PubMed  CAS  Google Scholar 

  61. Ludin, B. and Matus, A. (1998) GFP illuminates the cytoskeleton. Trends Cell. Biol. 8, 72–77.

    PubMed  CAS  Google Scholar 

  62. Morales, M. J. and Gottlieb, D. I. (1993) A polymerase chain reaction-based method for detection and quantitation of reporter gene expression in transient transfection assays. Anal. Biochem. 210, 188–194.

    PubMed  CAS  Google Scholar 

  63. Alton, N. K. and Vapnek, D. (1979) Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9. Nature 282, 864–869.

    PubMed  CAS  Google Scholar 

  64. Leslie, A. G. W., Moody, P. C. E., and Shaw, W. V. (1988) Structure of chloramphenicol acetyltransferase at 1. 75A resolution. Proc. Nat. Acad. Sci. 85, 4133–4137.

    PubMed  CAS  Google Scholar 

  65. Thompson, J. F., Hayes, L. S., and Lloyd, D. B. (1991) Modulation of firefly luciferase stability and impact on studies of gene regulation. Gene 103, 171–177.

    PubMed  CAS  Google Scholar 

  66. Shaw, W. V. (1975) Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Meth. Enzymol. 43, 737–755.

    PubMed  CAS  Google Scholar 

  67. Seed, B. and Sheen, J-Y. (1988) A simple phase-extraction assay for chloramphenicol acyltransferase activity. Gene 67, 271–277.

    PubMed  CAS  Google Scholar 

  68. Neumann, J. R., Morency, C. A., and Russian, K. O. (1987) A novel rapid assay for chloramphenicol acetyltransferase gene expression. BioTechniques 5, 444–447.

    CAS  Google Scholar 

  69. Hruby, D. E., Brinkley, J. M., Kang, H. C., Haugland, R. P., Young, S. L., and Melnor, M. H. (1990) Use of a fluorescent chloramphenicol derivative as a substrate for CAT assays. BioTechniques 8, 170–171.

    PubMed  CAS  Google Scholar 

  70. DeWet, J. R., Wood, K. V., Helinski, D. R., and DeLuca, M. (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc. Natl. Acad. Sci. 82, 7870–7873.

    CAS  Google Scholar 

  71. DeWet, J. R., Wood, K. V., DeLuca, M., Helinski, D. R., and Subramani, S. (1987) Firefly luciferase gene: Structure and expression in mammalian cells. Mol. Cell. Biol. 7, 725–737.

    CAS  Google Scholar 

  72. Bronstein, I., Fortin, J., Stanley, P. E., Stewart, G. S. A. B., and Kricka, L. J. (1994) Chemiluminescent and bioluminescent reporter gene assays. Anal. Biochem. 219, 169–181.

    PubMed  CAS  Google Scholar 

  73. Pazzagli, M., Devine, J. H., Peterson, D. O., and Baldwin, T. O. (1992) Use of bacterial and firefly luciferases as reporter genes in DEAE-dextran-mediated transfection of mammalian cells. Anal. Biochem. 204, 315–323.

    PubMed  CAS  Google Scholar 

  74. Wood, K. V. (1991) in Bioluminescence and Chemiluminescence: Current Status. (Stanley, P. E. and Kricka, L. J., eds.) Wiley, Chichester, 11–14.

    Google Scholar 

  75. Hawkins, El, Jennens-Clough, M., and Wood, K. V. (1999) Steady-Glo luciferase assay system for high-throughput screening applications. Promega Notes 70, 7–10.

    Google Scholar 

  76. Langridge, W., Escher, A., Wang, G., Ayre, B., Fodor, I., and Szalay, A. (1994) Low-light image analysis of transgenic organisms using bacterial luciferase as a marker. J. Biolumin. Chemilumin. 9, 185–200.

    PubMed  CAS  Google Scholar 

  77. Craig, F. F., Simmonds, A. C., Watmore, D., McCapra, F., and White, M. R. H. (1992) Membrane-permeable luciferin esters for assay of firefly luciferase in live intact cells. Biochem. J. 276, 637–641.

    Google Scholar 

  78. Sherf, B. A., Navarro, S. L., Hannah, H. H., and Wood, K. V. (1996) Dual-luciferase reporter assay: an advanced co-reporter technology integrating firefly and Renilla luciferase assays. Promega Notes 57, 2–9.

    Google Scholar 

  79. Hall, C. V., Jacob, P. E., Ringold, G. M., and Lee, F. (1983) Expression and regulation of Escherichia coli lacZ gene fusions in mammalian cells. J. Molec. Applied Gen. 2, 101–109.

    CAS  Google Scholar 

  80. Marsh, J. (1994) Kinetic determination of cellular LacZ expression. GATA 11, 20–23.

    CAS  Google Scholar 

  81. Eustice, D. C., Feldman, P. A., Colberg-Poley, A. M., Buckery, R. M., and Neubauer, R. H. (1991) A sensitive method for the detection of β-galactosidase in transfected mammalian cells. BioTechniques 11, 739–742.

    PubMed  CAS  Google Scholar 

  82. Price, J., Turner, D. and Cepko, C. (1987) Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc. Nat. Acad. Sci. 84, 156–160.

    PubMed  CAS  Google Scholar 

  83. Krasnow, M. A., Cumberledge, S., Manning, G., Herzenberg, L. A., and Nolan, G. P. (1991) Whole animal cell sorting of Drosophila embryos. Science 251, 81–85.

    PubMed  CAS  Google Scholar 

  84. Hammerling, U., Bongcam-Rudloff, E., Setterblad, N., Kroon, R., Rehnstrom, A. K., Viitanen, E., Andersson, G., and Sjodin, L. (1998) The beta-gal interferon assay: a new, precise, and sensitive method. J. Interferon Cytokine Res. 18, 451–460.

    Article  PubMed  CAS  Google Scholar 

  85. Jain, V. K. and Magrath, I. T. (1991) A chemiluminescent assay for quantitation of β-galactosidase in the femtogram range: application to quantitation of β-galactosidase in lacZ-transfected cells. Anal. Biochem. 199, 119–124.

    PubMed  CAS  Google Scholar 

  86. Sanes, J. R., Rubenstein, J. L. R., and Nicolas, J.-F. (1986) Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J. 5, 3133–3142.

    PubMed  CAS  Google Scholar 

  87. Lim, K. and Chae, C. B. (1989) A simple assay for DNA transfection by incubation of the cells in culture dishes with substrates for beta-galactosidase. BioTechniques 7, 576–579.

    PubMed  CAS  Google Scholar 

  88. Young, D. C., Kingsley, S. D., Ryan, K. A., and Dutko, F. J. (1993) Selective inactivation of eukaryotic β-galactosidase in assays for inhibitors of HIV-1 TAT using bacterial β-galactosidase as a reporter enzyme. Anal. Biochem. 215, 24–30.

    PubMed  CAS  Google Scholar 

  89. Gallagher, S. R. (1992) GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression. Academic Press, San Diego, CA.

    Google Scholar 

  90. Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907.

    PubMed  CAS  Google Scholar 

  91. Paigen, K. (1989) Mammalian beta-glucuronidase: Genetics, molecular biology, and cell biology. Prog. Nucleic Acid Res. Mol. Biol. 37, 155–205.

    Article  PubMed  CAS  Google Scholar 

  92. Selden, R. F., Howie, K. B., Rowe, M. E., Goodman, H. M., and Moore, D. D. (1986) Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol. Cell. Biol. 6, 3173–3179.

    PubMed  CAS  Google Scholar 

  93. Henthorn, P., Zervos, P., Raducha, M., Harris, H., and Kadesch, T. (1988) Expression of a human placental alkaline phosphatase gene in transfected cells: Use as a reporter for studies of gene expression. Proc. Natl. Acad. Sci. USA 85, 6342–6346.

    PubMed  CAS  Google Scholar 

  94. Yoon, K., Thiede, M. A., and Rodan, G. A. (1988) Alkaline phosphatase as a reporter enzyme. Gene 66, 11–17.

    PubMed  CAS  Google Scholar 

  95. Harbron, S., Eggelte, H. J., Fisher, M., and Rabin, B. R. (1992) Amplified assay of alkaline phosphatase using flavin-adenine dinucleotide phosphate as substrate. Anal. Biochem. 206, 119–124.

    PubMed  CAS  Google Scholar 

  96. Miska, W. and Geiger, R. (1987) Synthesis and characterization of luciferin derivatives for use in bioluminescence enhanced enzyme immunoassays. J. Clin. Chem. Clin. Biochem. 25, 23–30.

    PubMed  CAS  Google Scholar 

  97. Shaap, A. P., Akhavan, H., and Romano, L. J. (1989) Chemiluminescent substrates for alkaline phosphatase: application to ultrasensitive enzyme-linked immunoassays and DNA probes. Clin. Chem. 35, 1863–1864.

    Google Scholar 

  98. Tsien, R. Y. (1998) The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544.

    PubMed  CAS  Google Scholar 

  99. Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G., and Mormier, M. J. (1992) Primary structure of the Aequorea victoria green fluorescent protein. Gene 111, 229–233.

    PubMed  CAS  Google Scholar 

  100. Cody, C. W., Prasher, D. C., Westler, W. M., Prendergast, F. G., and Ward, W. (1993) Chemical structure of the hexapeptide chromophore of the aequorea green-fluorescent protein. Biochemistry 32, 1212–1218.

    PubMed  CAS  Google Scholar 

  101. Yang, Rl, Moss, L. G., and Phillips, G. N. (1996) The molecular structure of green fluorescent protein. Nature Biotechnology 14, 1246–1251.

    Google Scholar 

  102. Crameri, A., Whitehorn, E. A., Tate, E., and Stemmer, W. P. C. (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnology 14, 315–319.

    Google Scholar 

  103. Zolotukhin, S., Potter, M., Hauswirth, W. W., Guy, J., and Muzyczka, N. (1996) A “humanized” green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J. Virology 70, 4646–4654.

    Google Scholar 

  104. Ormo, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., and Remington, S. J. (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395.

    Google Scholar 

  105. Patterson, G. H., Knobel, S. M., Sharif, W. D., Kain, S. R., and Piston, D. W. (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782–2790.

    PubMed  CAS  Google Scholar 

  106. Rizutto, R., Brini, M., De Giorgi, F., Rossi, R., Heim, R., Tsien, R. Y., and Pozzan, T. (1996) Double labelling of subcellular structures with organelle-targeted GFP mutants in vivo. Current Biology 6, 183–188.

    Google Scholar 

  107. Llopis, J., McCaffery, J. M., Miyawaki, A., Farquhar, M. G., and Tsien, R. Y. (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc. Natl. Acad. Sci. USA 95, 6803–6808.

    PubMed  CAS  Google Scholar 

  108. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    PubMed  CAS  Google Scholar 

  109. Wang, S. and Hazelrigg, T. (1994) Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369, 400–403.

    PubMed  CAS  Google Scholar 

  110. Takada, T., Iida, K., Awaji, T., Itoh, K., Takahashi, R., Shibul, A., Yoshida, K., Sugano, S. I., and Tsujimoto, G. (1997) Selective production of transgenic mice using green fluorescent protein as a marker. Nature Biotechnology 15, 458–461.

    PubMed  CAS  Google Scholar 

  111. Cubitt, A. B., Heim, R., Adams, S. R., Boyd, A. E., Gross, L. A., and Tsien, R. Y. (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20, 448–455.

    PubMed  CAS  Google Scholar 

  112. Sutcliffe, J. G. (1978) Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. Proc. Natl. Acad. Sci. USA 75, 3737–3741.

    PubMed  CAS  Google Scholar 

  113. Zlokarnik, G., Negulescu, P. A., Knapp, T. E., Mere, L., Burres, N., Feng, L., Whitney, M., Roemer, K., and Tsien, R. Y. (1998) Quantification of transcription and clonal selection of single living cells with β-lactamase as reporter. Science 279, 84–88.

    PubMed  CAS  Google Scholar 

  114. Moore, J. T., Davis, S. T., and Dev, I. K. (1997) The development of β-lactamase as a highly versatile genetic reporter for eukaryotic cells. Anal. Biochem. 247, 203–209.

    PubMed  CAS  Google Scholar 

  115. Whitney, M., Rockenstein, E., Cantin, G., Knapp, T., Zlokarnik, G., Sanders, P., Durick, K., Craig, F. F., and Negulescu, P. A. (1998) A genome-wide functional assay of signal transduction in living mammalian cells. Nature Biotechnology 16, 1329–1333.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schenborn, E., Groskreutz, D. Reporter gene vectors and assays. Mol Biotechnol 13, 29–44 (1999). https://doi.org/10.1385/MB:13:1:29

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:13:1:29

Index Entries

Navigation