Skip to main content
Log in

Restriction endonuclease

Classification, properties, and applications

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Restriction endonucleases have become a fundamental tool of molecular biology with many commercial vendors and extensive product lines. While a significant amount has been learned about restriction enzyme diversity, genomic organization, and mechanism, these continue to be active areas of research and assist in classification efforts. More recently, one focus has been their exquisite specificity for the proper recognition sequence and the lack of homology among enzymes recognizing the same DNA sequence. Some questions also remain regarding in vivo function. Site-directed mutagenesis and fusion proteins based on known endonucleases show promise for custom-designed cleavage. An understanding of the enzymes and their properties can improve their productive application by maintaining critical digest parameters and enhancing or avoiding alternative activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roberts, R. J. and Halford, S. E. (1993), Type II Restriction Endonucleases, in Nucleases, 2nd Edition (Linn S. M., Lloyd, S. R., and Roberts, R. J. eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 35–88.

    Google Scholar 

  2. Stein, D.C., Gunn, J.S., Radlinska, M., and Piekarowicz, A. (1995) Restriction and modification systems of Neisseria gonorrhoeae. Gene 157, 19–22.

    Article  PubMed  CAS  Google Scholar 

  3. Lin, L-F. Posfai, J., Roberts, R. J., and Kong, H. (2001) Comparative genomics of the restriction-modification systems in Helicobacter pylori. Nuc. Acids Res. 98, 2740–2745.

    CAS  Google Scholar 

  4. Rocha, E. P. C., Danchin, A., and Viari, A. (2001) Evolutionary Role of Restriction/Modification Systems as Revealed by Comparative Genome Analysis. Genome Res. 11, 946–958.

    Article  PubMed  CAS  Google Scholar 

  5. Nobusato, A., Uchiyama, I., and Kobayashi, I. (2000) Diversity of restriction-modification gene homologues in Helicobacter pylori Gene 259, 89–98.

    Article  PubMed  CAS  Google Scholar 

  6. Smith, H. O. and Nathans, D. (1973) A suggested nomenclature for bacterial host modification and restriction systems and their enzymes. J. Mol. Biol. 81, 419–423.

    Article  PubMed  CAS  Google Scholar 

  7. Wilson, G. G. and Murray, N. E. (1991) Restriction and Modification Systems. Annu. Rev. Genet. 25, 585–627.

    Article  PubMed  CAS  Google Scholar 

  8. Stahl, F., Wende, W., Jeltsch, A., and Pingoud, A. (1998) The Mechanism of DNA Cleavage by the Type II Restriction Enzyme EcoRV: Asp36 Is Not Directly Involved in DNA Cleavage but Serves to Couple Indirect Readout to Catalysis. Biol. Chem. 379, 467–473.

    PubMed  CAS  Google Scholar 

  9. Smith, H. O., Annau, T. M., and Chandrasegaran, S. (1990) Finding sequence motifs in groups of functionally related proteins. Proc. Natl. Acad. Sci. USA 87, 826–830.

    Article  PubMed  CAS  Google Scholar 

  10. Szomolanyi, E., Kiss, A., and Ventianer, P. (1980) Cloning the modification methylase gene of Bacillus sphaericus R in Escherichia coli. Gene 10, 219–225.

    Article  PubMed  CAS  Google Scholar 

  11. Tao, T., Bourne, J. C., and Blumenthal, R. M. (1991) A Family of Regulatory Genes Associated with Type II Restriction-Modification Systems. J. Bact. 173, 1367–1375.

    PubMed  CAS  Google Scholar 

  12. Ives, C. L., Sohail, A., and Brooks, J. E. (1995) The Regulatory C Proteins from Different Restriction-Modification Systems Can Cross-Complement. J. Bact. 177, 6313–6315.

    PubMed  CAS  Google Scholar 

  13. Bickle, T. A. (1993) The ATP-dependent Restriction Enzymes, in Nucleases, 2nd ed. (Linn S. M., Lloyd, S. R., and Roberts, R. J. eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 35–88.

    Google Scholar 

  14. Murray, N. E. (2000) Type I restriction systems: sophisticated molecular machines. Microbiol. Mol. Biol. Revs. 64, 412–434.

    Article  CAS  Google Scholar 

  15. Pingoud, A. and Jeltsch, A. (1997) Recognition and cleavage of DNA by type-II restriction endonucleases. Eur. J. Biochem. 246, 1–22.

    Article  PubMed  CAS  Google Scholar 

  16. Pingoud, A., Jeltsch, A. (2001) Structure and function of type II restriction endonucleases. Nuc. Acids Res. 29, 3705–3727.

    Article  CAS  Google Scholar 

  17. Reuter, M., Kupper, D., Pein, C. D., Petrusyte, M., Siksnys, V., Frey, B., and Kruger, D. H. (1993) Use of Specific Oligonucleotide Duplexes to Stimulate Cleavage of Refractory DNA Sites by Restriction Endonucleases. Anal. Biochem. 209, 232–237.

    Article  PubMed  CAS  Google Scholar 

  18. Oller, A. R., Broek, W. V., Conrad, M., and Topal, M. (1991) Ability of DNA and Spermidine To Affect the Activity of Restriction Endonucleases from Several Bacterial Species. Biochemistry 30, 2543–2549.

    Article  PubMed  CAS  Google Scholar 

  19. Szybalski, W., Kim, S. C., Hasan, N., and Podhajska, A. J. (1991) Class-IIS restriction enzymes — a review. Gene 100, 13–26.

    Article  PubMed  CAS  Google Scholar 

  20. Kong, H. (1998) Analyzing the Functional Organization of a Novel Restriction Modification System, the BcgI System. J. Mol. Biol. 279, 823–832.

    Article  PubMed  CAS  Google Scholar 

  21. Sears, L. E., Zhou, B., Aliotta, J. M., Morgan, R. D., and Kong, H. (1996) BaeI, another unusual BcgI-like restriction endonuclease. Nucleic Acids Res. 24, 3590–3592.

    Article  PubMed  CAS  Google Scholar 

  22. Belfort, M. and Roberts, R. J. (1997) Homing endonucleases: keeping the house in order. Nuc. Acids Res. 25, 3379–3388.

    Article  CAS  Google Scholar 

  23. Meisel, A., Mackeldanz, P., Bickle, T. A., Kruger, D. H., and Schroeder, C. (1995) Type III restriction endonucleases translocate DNA in a reaction driven by recognition site-specific ATP hydrolysis. EMBO J. 14, 2958–2966.

    PubMed  CAS  Google Scholar 

  24. Kruger, D. H., Kupper, D., Meisel, A., Reuter, M., and Schroeder, C. (1995) The significance of distance and orientation of restriction endonuclease recognition sites in viral DNA genomes. FEMS Microbiol. Rev. 17, 177–184.

    PubMed  CAS  Google Scholar 

  25. Janulaitis, A., Petrusyte, M., Maneliene, Z., Klimasauskas, S., and Butkus, V. (1992) Purification and properties of the Eco57I restriction endonuclease and methylase—prototypes of a new class (type IV). Nucl. Acids Res. 20, 6043–6049.

    Article  PubMed  CAS  Google Scholar 

  26. Williams, R. J. (2001), Restriction Endonucleases and Their Uses, in The Nucleases (Schein, C. H., ed.), Humana Press, New York, NY, pp. 409–429.

    Google Scholar 

  27. Mise, K. and Nakajima, K. (1985) Purification of a new restriction endonuclease, StyI, from Escherichia coli carrying the hsd+ minplasmid. Gene 33, 357–361.

    Article  PubMed  CAS  Google Scholar 

  28. Jeltsch, A., and Pingoud, A. (1998) Kinetic Characterization of Linear Diffusion of the Restriction Endonuclease EcoRV on DNA. Biochemistry 37, 2160–2169.

    Article  PubMed  CAS  Google Scholar 

  29. Engler, L. E., Sapienza, P., Dorner, L. F., Kucera, R., Schildkraut, I., and Jen-Jacobson, L. (2001) The Energetics of the Interaction of BamHI Endonuclease with its Recognition Site GGATCC. J. Mol. Biol. 307, 619–636.

    Article  PubMed  CAS  Google Scholar 

  30. Horton, N. C. and Perona, J. J. (2000) Crystallographic snapshots along a protein-induced DNA-bending pathway. Proc. Natl. Acad. Sci. 97, 5729–5734.

    Article  PubMed  CAS  Google Scholar 

  31. Kovall, R. A. and Matthews, B. W. (1998) Structural, functional, and evolutionary relationships between λ-exonuclease and the type II restriction endonucleases. Proc. Natl. Acad. Sci. 95, 7893–7897.

    Article  PubMed  CAS  Google Scholar 

  32. Kovall, R. A. and Matthews, B. W. (1999) Type II restriction endonucleases: structural, functional and evolutionary relationships. Curr. Opin. Chem. Biol. 3, 578–583.

    Article  PubMed  CAS  Google Scholar 

  33. Kubareva, E. A., Thole, H., Karyagina, A. S., Oretskaya, T. S., Pingoud, A., and Pingoud, V. (2000) Identification of a base-specific contact between the restriction endonuclease SsoII and its recognition sequence by photocross-linking. Nucl. Acids Res. 28, 1085–1091.

    Article  PubMed  CAS  Google Scholar 

  34. Lukacs, C. M., Kucera, R., Schildkraut, I., and Aggarwal, A. K. (2000) Understanding the immutability of restriction enzymes: crystal structure of BglII and its DNA substrate at 1.5 Å resolution. Nature Struc. Biol. 7, 134–140.

    Article  CAS  Google Scholar 

  35. Huai, Q., Colandene, J. D., Chen, Y., Luo, F., Zhao, Y., Topal, M. D., and Ke, H. (2000) Crystal structure of NaeI-an evolutionary bridge between DNA endonuclease and topoisomerase. EMBO J. 19, 3110–3118.

    Article  PubMed  CAS  Google Scholar 

  36. Reuter, M., Kupper, D., Meisel, A., Schroeder, C., and Kruger, D. H. (1998) Cooperative Binding Properties of Restriction Endonuclease EcoRII with DNA Recognition Sites. J. Biol. Chem. 273, 8294–8300.

    Article  PubMed  CAS  Google Scholar 

  37. Pein, C. D., Reuter, M., Meisel, A., Cech D., and Kruger, D. H. (1991) Activation of restriction endonuclease EcoRII does not depend on the cleavage of stimulator DNA. Nuc. Acids Res. 19, 5139–5142.

    Article  CAS  Google Scholar 

  38. Conrad, M., and Topal, M. (1992) Modified DNA fragments activate NaeI cleavage of refractory DNA sites. Nuc. Acids Res. 20, 5127–5130.

    Article  CAS  Google Scholar 

  39. Senesac, J. H. and Allen, J. R. (1995) Oligonucleaotide Activation of the Type IIe Restriction Enzyme NaeI for Digestion of Refractory Sites. BioTechniques 19, 990–993.

    PubMed  CAS  Google Scholar 

  40. Jo, K. and Topal, M. D. (1995) DNA Topoisomerase and Recombinase Activities in NaeI Restriction Endonuclease. Science 267, 1817–1820.

    Article  PubMed  CAS  Google Scholar 

  41. Jo, K. and Topal, M. D. (1998) Step-wise DNA relaxation and decatenation by NaeI-43K. Nucleic Acids Res. 26, 2380–2384.

    Article  PubMed  CAS  Google Scholar 

  42. Colandene, J. D. and Topal, M. D. (2000) Evidence for Mutations That Break Communication between the Endo and Topo Domains in NaeI Endonuclease/Topoisomerase. Biochemistry 39, 13703–13707.

    Article  PubMed  CAS  Google Scholar 

  43. Wah, D. A., Hirsch, J. A., Dorner, L. F., Schildkraut, I., and Aggarwal, A. K. (1997) Structure of the multimodular endonuclease FokI bound to DNA. Nature 388, 97–100.

    Article  PubMed  CAS  Google Scholar 

  44. Bitinaite, J., Wah, D. A., Aggarwal, A. K., and Schildkraut, I. (1998) FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. 95, 10570–10575.

    Article  PubMed  CAS  Google Scholar 

  45. Scheuring, E. S., Santagata, S., and Aggarwal, A. K. (2001) FokI Requires Two Specific DNA Sites for Cleavage. J. Mol. Biol. 309, 69–78.

    Article  CAS  Google Scholar 

  46. Wentzell, L. M., Nobbs, T. J. and Halford, S. E. (1995) The SfiI restriction endonuclease makes a 4-strand DNA break at two copies of its recognition sequence. J. Mol. Biol. 248, 581–595.

    Article  PubMed  CAS  Google Scholar 

  47. Sato, H., Suzuki, T., and Yamada, Y. (1990) Purification of Restriction Endonuclease from Acetobacter aceti IFO 3281 (AatII) and its Properties. Agric. Biol. Chem. 54, 3319–3325.

    PubMed  CAS  Google Scholar 

  48. Siksnys, V., Skirgaila, R., Sasnauskas, G., Urbanke, C., Cherny, D., Grazulis, S. (1999) The Cfr10I restriction enzyme is functional as a tetramer. J. Mol. Biol. 291, 1105–1118.

    Article  PubMed  CAS  Google Scholar 

  49. Deibert, M., Grazulis, S., Sasnauskas, G., Siksnys, V., and Huber, R. (2000) Struture of the tetrameric restriction endonuclease NgoMIV in complex with cleaved DNA. Nature Struct. Biol. 7, 792–799.

    Article  PubMed  CAS  Google Scholar 

  50. Nobbs, T. J., Williams, S. A., Connolly, B. A., and Halford, S. E. (1998) Phosphorothioate Substrates for the SfiI Restriction Endonuclease. Biol. Chem. 379, 599–604.

    PubMed  CAS  Google Scholar 

  51. Nobbs, T. J. and Halford, S. E. (1995) DNA cleavage at two recognition sites by the SfiI restriction endonuclease: salt dependence of cis and trans interactions between distand DNA sites. J. Mol. Biol. 252, 399–411.

    Article  PubMed  CAS  Google Scholar 

  52. Embleton, M. L., Sidsnys, V., and Halford, S. E. (2001) DNA Cleavage Reactions by Type II Restriction Enzymes that Require Two Copies of their Recognition Sites. J. Mol. Biol. 311, 503–514.

    Article  PubMed  CAS  Google Scholar 

  53. Williams, S. A. and Halford, S. E. (2001) Sfil endonuclease activity is strongly influenced by the non-specific sequence in the middle of its recognition site. Nucl. Acids Res. 29, 1476–1483.

    Article  PubMed  CAS  Google Scholar 

  54. Stankevicius, K., Lubys, A., Timinskas, A., Vaitkevicius, D., and Janulaitis, A. (1998) Cloning and analysis of the four genes coding for Bpu101 restriction-modification enzymes. Nucl. Acids Res. 26, 1084–1091.

    Article  PubMed  CAS  Google Scholar 

  55. Hsieh, P.-C., Xiao, J.-P., O’Loane, D., and Xu, S.-Y. (2000) Cloning, Expression, and Purification of a Thermostable Nonhomodimeric Restriction Enzyme, BslI. J. Bact. 182, 949–955.

    Article  PubMed  CAS  Google Scholar 

  56. Kong, H. and Smith, C. L. (1998) Does BcgI, a Unique Restriction Endonuclease, Require Two Recognition Sites for Cleavage? Biol. Chem. 379, 605–609.

    PubMed  CAS  Google Scholar 

  57. Kong, H. and Smith, C. L. (1997) Substrate DNA and cofactor regulate the activities of a multi-functional restriction-modification enzyme, Bcg I. Nucl. Acids Res. 25, 3687–3692.

    Article  PubMed  CAS  Google Scholar 

  58. Galburt, E. A., Chevalier, B., Tang, W., Jurica, M. S., Flick, K. E., Monnat, R. J., and Stoddard, B. L. (1999) A novel endonuclease mechanism directly visualized for I-PpoI. Nature Struct. Biol. 6, 1096–1099.

    Article  PubMed  CAS  Google Scholar 

  59. Robinson, C. R. and Sligar, S. G. (1998) Changes in solvation during DNA binding and cleavage are critical to altered specificity of the EcoRI endonuclease. Proc. Natl. Acad. Sci. USA 95, 2186–2191.

    Article  PubMed  CAS  Google Scholar 

  60. Lesser, D. R., Kurpiewski, M. R., and Jen-Jacobson, L. (1990) The Energetic Basis of Specificity in the EcoRI Endonuclease-DNA Interaction. Science 250, 776–786.

    Article  PubMed  CAS  Google Scholar 

  61. Sidorova, N. Y. and Rau, D. C. (2001) Linkage of EcoRI Dissociation from its Specific DNA Recognition Site to Water Activity, Salt Concentration, and pH: Separating their Roles in Specific and Non-specific Binding. J. Mol. Biol. 310, 801–816.

    Article  PubMed  CAS  Google Scholar 

  62. Vermote, C. L. M. and Halford, S. E. (1992) EcoRV restriction endonuclease: Communication between catalytic metal ions and DNA recognition. Biochemistry 31, 6082–6089.

    Article  PubMed  CAS  Google Scholar 

  63. Yoo, O. J. and Agarwal, K. L. (1980) Cleavage of single strand oligonucleotides and bacteriophage phiX174 DNA by Msp I endonuclease. J. Biol. Chem. 255, 10559–10562.

    PubMed  CAS  Google Scholar 

  64. Blakesley, R. W., Dodgson, J. B., Nes, I. F., Wells, R. D. (1977) Duplex regions in “single-stranded” phiX174 DNA are cleaved by a restriction endonuclease from Haemophilus aegypius. J. Biol. Chem. 252, 7300–7306.

    PubMed  CAS  Google Scholar 

  65. Shaw, P. C. and Mok, Y. K. (1993) XcmI as a universal restriction enzyme for single-stranded DNA. Gene 133, 85–89.

    Article  PubMed  CAS  Google Scholar 

  66. Abdurashitov, M. A., Belichenko, O. A., Shevchenko, A. V. and Degtyarev, S. K. (1996) N.BstSE-site-specific nuclease from Bacillus stearothermophilus SE-589-restriction endonuclease production. Mol. Biol. (Mosk.) 30, 1261–1267.

    CAS  Google Scholar 

  67. Morgan, R. D., Calvet, C., Demeter, M., Agra, R. and Kong, H. (2000) Characterization of the specific DNA nicking activity of restriction endonuclease N.BstNBI. Biol. Chem. 381, 1123–1125.

    Article  PubMed  CAS  Google Scholar 

  68. Higgins, L. S., Besnier, C. and Kong, H. (2001) The nicking endonuclease N.BstNBI is closely related to Type IIs restriction endonucleases MlyI and PleI. Nucl. Acids Res. 29, 2492–2501.

    Article  PubMed  CAS  Google Scholar 

  69. Wenz, C., Selent, U., Wende, W., Jeltsch, A., Wolfes, H., and Pingoud, A. (1994) Protein engineering of the restriction endonuclease EcoRV: replacement of an amino acid residue in the DNA binding site leads to an altered selectivity towards unmodified and modified substrates. Biochim. Biophys. Acta. 1219, 73–80.

    PubMed  CAS  Google Scholar 

  70. Lanio, T., Selent, U., Wnez, C., Wende, W., Schulz, A., Adiraj, M., Katti, S. B., and Pingoud, A. (1996) EcoRV-T94V: a mutant restriction endonuclease with an altered substrate specificity towards modified oligodeoxynucleotides. Protein Eng. 9, 1005–1010.

    Article  PubMed  CAS  Google Scholar 

  71. Schottler, S., Wenz, C., Lanio, A., Jeltsch, A., and Pingoud, A. (1998) Protein engineering of the restriction endonuclease EcoRV: Structure-guided design of enzyme variants that recognize the base pairs flanking the recognition site. Eur. J. Biochem. 258, 184–191.

    Article  PubMed  CAS  Google Scholar 

  72. Lanio, T., Jeltsch, A., and Pingoud, A. (1998) Towards the Design of Rare Cutting Restriction Endonucleases: Using Directed Evolution to Generate Variants of EcoRV Differing in Their Substrate Specificity by Two Orders of Magnitude. J. Mol. Biol. 283, 59–69.

    Article  PubMed  CAS  Google Scholar 

  73. Stahl, F., Wende, W., Jeltsch, A., and Pingoud, A. (1996) Introduction of asymmetry in the naturally symmetric restriction endonuclease EcoRV to investigate intersubunit communication in the homodimeric protein. Proc. Natl. Acad. Sci. USA 93, 6175–6180.

    Article  PubMed  CAS  Google Scholar 

  74. Dervan, P. B. (1992) Reagents for the site-specific cleavage of megabase DNA. Nature 359, 87–88.

    Article  PubMed  CAS  Google Scholar 

  75. Ebright, Y. W., Chen, Y., Pendergrast P. S., and Ebright, R. H. (1992) Incorporation of an EDTA-metal complex at a rationally selected site within a protein: application to EDTA-iron DNA affinity cleaving with catabolite gene activator protein (CAP) and Cro. Biochemistry 31, 10664–10670.

    Article  PubMed  CAS  Google Scholar 

  76. Pendergrast, P. S., Ebright, Y. W., and Ebright, R. H. (1994) High-Specificity DNA Cleavage Agent: Design and Application to Kilobase and Megabase DNA Substrates. Science 265, 959–962.

    Article  PubMed  CAS  Google Scholar 

  77. Shang, Z., Ebright, Y. W., Iler, N., et al. (1994) DNA affinity cleaving analysis of homeodomain-DNA interaction: Identification of homeodomain consensus sites in genomic DNA. Proc. Natl. Acad. Sci. USA 91, 118–122.

    Article  PubMed  CAS  Google Scholar 

  78. Koob, M., Burkiewicz, A., Kur J., Szybalski, W. (1992) RecA-AC: single-site cleavage of plasmids and chromosones at any predetermined restriction site. Nucl. Acids. Res. 20, 5831–5836.

    Article  PubMed  CAS  Google Scholar 

  79. Schoenfeld, T., Harper, T., and Slater, M. (1995) RecA Cleavage and Protection for Genomic Mapping and Subcloning. Promega Notes 50, 9–14.

    Google Scholar 

  80. Strobel, S. A. and Dervan, P. B. (1991) Single-site enzymatic cleavage of yeast genomic DNA mediated by triple helix formation. Nature 350, 172–174.

    Article  PubMed  CAS  Google Scholar 

  81. Xu, Y., Lunnen, K. D., and Kong, H. (2001) Engineering a nicking endonuclease N.AlwI by domain swapping. Proc. Natl. Acad. Sci. 98, 12990–12995.

    Article  PubMed  CAS  Google Scholar 

  82. Kim, Y. G. and Chandrasegaran, S. (1994) Chimeric restriction endonuclease. Proc. Natl. Acad. Sci. USA 91, 883–887.

    Article  PubMed  CAS  Google Scholar 

  83. Kim, Y. G., Shi, Y., Berg, J. M., and Chandrasegaran, S. (1997) Site-specific cleavage of DNA-RNA hybrids by zinc finger/FokI cleavage domain fusions. Gene 203, 43–49.

    Article  PubMed  CAS  Google Scholar 

  84. Kim, Y. G., Smith, J., Durgesha, M., and Chandrasegaran, S. (1998) Chimeric Restriction Enzyme: Gal4 Fusion to FokI Cleavage Domain. Biol. Chem. 379, 489–495.

    Article  PubMed  CAS  Google Scholar 

  85. Smith, J., Berg, J. M., Chandrasegaran, S. (1999) A detailed study of the substrate specificity of a chimeric restriction enzyme. Nucl. Acids Res. 27, 674–681.

    Article  PubMed  CAS  Google Scholar 

  86. Smith, J., Bibikova, M., Whitby, F. G., Reddy, A. R., Chandrasegaran, S. and Carroll, D. (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucl. Acids Res. 28, 3361–3369.

    Article  PubMed  CAS  Google Scholar 

  87. Bibikova, M., Carroll, D., Segal, D. J., Trautman, J. K., Smith, J., Kim, Y-G. and Chandrasegaran, S. (2001) Stimulation of Homologous Recombination through Targeted Cleavage by Chimeric Nucleases. Mol. and Cell. Biol. 21, 289–297.

    Article  CAS  Google Scholar 

  88. New England BioLabs 2000·01 Catalog (2000). New England BioLabs, Inc., 210–211.

  89. Dallas-Yang, Q., Jiang, G., and Sladek, F. M. (1998) Digestion of Terminal Restriction Endonuclease Recognition Sites on PCR Products. BioTechniques 24, 582–584.

    Google Scholar 

  90. Moreira, R. F. and Noren, C. J. (1995) Minimum Duplex Requirements for Restriction Enzyme Cleavage Near the Termini of Linear DNA Fragments. BioTechniques 19, 57–59.

    Google Scholar 

  91. Hung, L., Murray, E., Murray, W., Bandziulis, R., Lowery, R., Williams, R., Noble, R. (1991) A Blue/White Cloning Assay for Quality Control of DNA Restriction and Modifying Enzymes. Promega Notes 33, 12–13.

    Google Scholar 

  92. Murray, E., Singer, K., Cash, K., and Williams, R. (1993) Cloning-qualified blunt end restriction enzymes: Causes and cures for light blue colonies. Promega Notes 41, 1–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, R.J. Restriction endonuclease. Mol Biotechnol 23, 225–243 (2003). https://doi.org/10.1385/MB:23:3:225

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:23:3:225

Index Entries

Navigation