Skip to main content
Log in

PNA technology

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Peptide nucleic acids (PNA) are deoxyribonucleic acid (DNA) mimics with a pseudopeptide backbone. PNA is an extremely good structural mimic of DNA (or of ribonucleic acid [RNA]), and PNA oligomers are able to form very stable duplex structures with Watson-Crick complementary DNA and RNA (or PNA) oligomers, and they can also bind to targets in duplex DNA by helix invasion. Therefore, these molecules are of interest in many areas of chemistry, biology, and medicine, including drug discovery, genetic diagnostics, molecular recognition, and the origin of life. Recent progress in studies of PNA properties and applications is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nielsen, P. E., Egholm, M, Berg, R. H., and Buchardt, O. (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500.

    Article  PubMed  CAS  Google Scholar 

  2. Egholm, M., Buchardt, O., Christensen, L., et al. (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365, 566–568.

    Article  PubMed  CAS  Google Scholar 

  3. Jensen, K. K., Ørum, H., Nielsen, P. E., and Nordén, B. (1997) Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique. Biochemistry 36, 5072–5077.

    Article  PubMed  CAS  Google Scholar 

  4. Wittung, P., Nielsen, P. E., Buchardt, O., Egholm, M., and Nordén, B. (1994) DNA-like double helix formed by peptide nucleic acid. Nature 368, 561–563.

    Article  PubMed  CAS  Google Scholar 

  5. Nielsen, P. E., Egholm, M., and Buchardt, O. (1994) Evidence for (PNA)2/DNA triplex structure upon binding of PNA to dsDNA by strand displacement. J. Mol. Recognit. 7, 165–170.

    Article  PubMed  CAS  Google Scholar 

  6. Cherny, D. Y., Belotserkovskii, B. P., Frank-Kamenetskii, M. D., et al. (1993) DNA unwinding upon strand-displacement binding of a thymine-substituted polyamide to double-stranded DNA. Proc. Natl. Acad. Sci. USA 90, 1667–1670.

    Article  PubMed  CAS  Google Scholar 

  7. Nielsen, P. E. (2001) Peptide nucleic acid targeting of double-stranded DNA. Methods Enzymol. 340, 329–340.

    Article  PubMed  CAS  Google Scholar 

  8. Lohse, J., Dahl, O., and Nielsen, P. E. (1999) Double duplex invasion by peptide nucleic acid: a general principle for sequence-specific targeting of double-stranded DNA. Proc. Natl. Acad. Sci. USA 96, 11,804–11,808.

    Article  CAS  Google Scholar 

  9. Nielsen, P. E. and Haaima, G. (1997) Peptide nucleic acid (PNA): a DNA mimic with a pseudopeptide backbone. Chem. Soc. Rev. 26, 73–78.

    Article  CAS  Google Scholar 

  10. Nielsen, P. E. and Egholm, M. (1999) Peptide Nucleic Acids: Protocols and Applications. Horizon Scientific, Wymondham, Norfolk, UK.

    Google Scholar 

  11. Nielsen, P. E. (1999) Peptide nucleic acid: a molecule with two identities. Acc. Chem. Res. 32, 624–630.

    Article  CAS  Google Scholar 

  12. Nielsen, P. E. (2000) Antisense peptide nucleic acids. Curr. Opin. Mol. Ther. 2, 282–287.

    PubMed  CAS  Google Scholar 

  13. Nielsen, P. E. (2001) Peptide nucleic acid: a versatile tool in genetic diagnostics and molecular biology. Curr. Opin. Biotechnol. 12, 16–20.

    Article  PubMed  CAS  Google Scholar 

  14. Nielsen, P. E. (2001) Peptide nucleic acids as antibacterial agents via the antisense principle. Expert Opin. Investig. Drugs 10, 331–341.

    Article  PubMed  CAS  Google Scholar 

  15. Ray, A. and Nordén, B. (2000) Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J. 14, 1041–1060.

    PubMed  CAS  Google Scholar 

  16. Ganesh, K. N. and Nielsen, P. E. (2000) Peptide nucleic acids: analogs and derivatives. Curr. Org. Chem. 4, 931–943.

    Article  CAS  Google Scholar 

  17. Dueholm, K. L., Egholm, M., Behrens, C., et al. (1994) Synthesis of peptide nucleic acid monomers containing the four natural nucleobases: thymine, cytosine, adenine and guanine, and their oligomerization. J. Org. Chem. 59, 5767–5773.

    Article  CAS  Google Scholar 

  18. Christensen, L., Fitzpatrick, R., Gildea, B., et al. (1995) Solid-phase synthesis of peptide nucleic acids (PNA). J. Peptide Sci. 3, 175–183.

    Article  Google Scholar 

  19. Thomson, S. A., Josey, J. A., Cadilla, R., et al. (1995) Fmoc mediated synthesis of peptide nucleic acids. Tetrahedron Lett. 51, 22, 6179–6194.

    CAS  Google Scholar 

  20. Koch, T., Naesby, M., Wittung, P., et al. (1995) PNA-peptide chimerae. Tetrahedron Lett. 36, 6933–6936.

    CAS  Google Scholar 

  21. Egholm, M., Christensen, L., Dueholm, K. L., Buchardt, O., Coull, J., and Nielsen, P. E. (1995) Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res. 23, 217–222.

    Article  PubMed  CAS  Google Scholar 

  22. Eldrup, A. B., Dahl, O., and Nielsen, P. E. (1997) A novel peptide nucleic acid monomer for recognition of thymine in triple helix structures. J. Am. Chem. Soc. 119, 11,116–11,117.

    Article  CAS  Google Scholar 

  23. Haaima, G., Hansen, H. F., Christensen, L., Dahl, O., and Nielsen, P. E. (1997) Increased DNA binding and sequence discrimination of PNA oligomers containing 2,6-diaminopurine. Nucleic Acids Res. 25, 4639–4643.

    Article  PubMed  CAS  Google Scholar 

  24. Eldrup, A., Nielsen, B. B., Haaima, G., et al. (2001) 1,8-Naphthyridin-2(1H)-ones: novel bi- and tricyclic analogues of thymine in peptide nucleic acids (PNA) Eur. J. Org. Chem. 1781–1790.

  25. Eldrup, A. B., Christensen, C., Haaima, G., and Nielsen, P. E. (2002) Substituted 1,8-naphthyridin-2(1H)-ones are superior to thymine in the recognition a adenine in duplex as well as triplex structures. J. Am. Chem. Soc. 124, 3254–3262.

    Article  PubMed  CAS  Google Scholar 

  26. Ausín, C., Ortega, J-A., Robles, J., Grandas, A., and Pedroso, E. (2002) Synthesis of amino- and guanidino-G-clamp PNA monomers. Org. Lett. 4, 4073–4075.

    Article  PubMed  CAS  Google Scholar 

  27. Rajeev, K. G., Maier, M. A., Lesnik, E. A., and Manoharan, M. (2002) High-affinity peptide nucleic acid oligomers containing tricyclic cytosine analogues. Org. Lett. 4, 4395–4398.

    Article  PubMed  CAS  Google Scholar 

  28. Pooga, M., Soomets, U., Hällbrink, M., et al. (1998) Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol. 16, 857–861.

    Article  PubMed  CAS  Google Scholar 

  29. Aldrian-Herrada, G., Desarménien, M. G., Orcel, H., et al. (1998) A peptide nucleic acid (PNA) is more rapidly internalized in cultured neurons when coupled to a retro-inverso delivery peptide: the antisense activity depresses the target mRNA and protein in magnocellular oxytocin neurons. Nucleic Acids Res. 26, 4910–4916.

    Article  PubMed  CAS  Google Scholar 

  30. Koppelhus, U., Awasthi, S. K., Zachar, V., Holst, H. U., Ebbesen, P., and Nielsen, P. E. (2002) Cell-dependent differential cellular uptake of PNA, peptides, and PNA-peptide conjugates. Antisense & Nucleic Acid Drug Dev. 12, 51–63.

    Article  CAS  Google Scholar 

  31. Cutrona, G., Carpaneto, E. M., Ulivi, M., et al. (2000) Effects in live cells of a c-myc anti-gene PNA linked to a nuclear localization signal. Nat. Biotechnol. 18, 300–303.

    Article  PubMed  CAS  Google Scholar 

  32. Hamilton, S. E., Simmons, C. G., Kathiriya, I. S., and Corey, D. R. (1999) Cellular delivery of peptide nucleic acids and inhibition of human telomerase. Chem. Biol. 6, 343–351.

    Article  PubMed  CAS  Google Scholar 

  33. Ljungstrøm, T., Knudsen, H., and Nielsen, P. E. (1999) Cellular uptake of adamantyl-conjugated peptide nucleic acids. Bioconjug. Chem. 10, 965–972.

    Article  PubMed  CAS  Google Scholar 

  34. Karras, J. G., Maier, M. A., Lu, T., Watt, A., and Manoharan, M. (2001) Peptide nucleic acids are potent modulators of endogenous pre-mRNA splicing of the murine interleukin-5 receptor-alpha chain. Biochemistry. 40, 7853–7859.

    Article  PubMed  CAS  Google Scholar 

  35. Faruqi, A. F., Egholm, M., and Glazer, P. M. (1998) Peptide nucleic acid-targeted mutagenesis of a chromosomal gene in mouse cells. Proc. Natl. Acad. Sci. USA 95, 1398–1403.

    Article  PubMed  CAS  Google Scholar 

  36. Lindgren, M., Hallbrink, M., Prochiantz, A., and Langel, U. (2000) Cell-penetrating peptides. Trends Pharmacol. Sci. 21, 99–103.

    Article  PubMed  CAS  Google Scholar 

  37. Thierry, A. R., Vives, E., Richard, J. P., et al. (2003) Cellular uptake and intracellular fate of antisense oligonucleotides. Curr. Opin. Mol. Ther. 5, 133–138.

    PubMed  CAS  Google Scholar 

  38. Richard, J. P., Melikov, K., Vives, E., et al. (2003) Cell-penetrating peptides: a reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278, 585–590.

    Article  PubMed  CAS  Google Scholar 

  39. Herbert, B. S., Pitts, A. E., Baker, S. I., et al. (1999) Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc. Natl. Acad. Sci. USA 96, 14,276–14,281.

    Article  CAS  Google Scholar 

  40. Shammas, M. A., Simmons, C. G., Corey, D. R., and Reis, R. J. S. (1999) Telomerase inhibition by peptide nucleic acids reverses “immortality” of transformed human cells. Oncogene 18, 6191–6200.

    Article  PubMed  CAS  Google Scholar 

  41. Doyle, D. F., Braasch, D. A., Simmons, C. G., Janowski, B. A., and Corey, D. R. (2001) Inhibition of gene expression inside cells by peptide nucleic acids: effect of mRNA target sequence, mismatched bases, and PNA length. Biochemistry 40, 53–64.

    Article  PubMed  CAS  Google Scholar 

  42. Mologni, L., Marchesi, E., Nielsen, P. E., and Gambacorti-Passerini, C. (2001) Inhibition of promyelocytic leukemia (PML)/retinoic acid receptor-alpha and PML expression in acute promyelocytic leukemia cells by anti-PML peptide nucleic acid. Cancer Res. 61, 5468–5473.

    PubMed  CAS  Google Scholar 

  43. Knudsen, H. and Nielsen, P. E. (1996) Antisense properties of duplex-and triplex-forming PNAs. Nucleic Acids Res. 24, 494–500.

    Article  PubMed  CAS  Google Scholar 

  44. Mologni, L., Lecoutre, P., Nielsen, P. E., and Gambacorti-Passerini, C. (1998) Additive antisense effects of different PNAs on the in vitro translation of the PML/RAR alpha gene. Nucleic Acids Res. 26, 1934–1938.

    Article  PubMed  CAS  Google Scholar 

  45. Hanvey, J. C., Peffer, N. J., Bisi, J. E., et al. (1992) Antisense and antigen properties of peptide nucleic acids. Science 258, 1481–1485.

    Article  PubMed  CAS  Google Scholar 

  46. Summerton, J. (1999) Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim. Biophys. Acta 1489, 141–158.

    PubMed  CAS  Google Scholar 

  47. Dias, N., Dheur, S., Nielsen, P. E., et al. (1999) Antisense PNA tridecamers targeted to the coding region of Ha-ras mRNA arrest polypeptide chain elongation. J. Mol. Biol. 294, 403–416.

    Article  PubMed  CAS  Google Scholar 

  48. Sazani, P., Kang, S. H., Maier, M. A., et al. (2001) Nuclear antisense effects of neutral, anionic and cationic oligonucleotide analogs. Nucleic Acids Res. 29, 3965–3974.

    PubMed  CAS  Google Scholar 

  49. Kang, S. H., Cho, M. J., and Kole, R. (1998) Up-regulation of luciferase gene expression with antisense oligonucleotides: implications and applications in functional assay development. Biochemistry 37, 6235–6239.

    Article  PubMed  CAS  Google Scholar 

  50. Sazani, P., Gemignani, F., Kang, S-H., et al. (2002) Systemically delivered antisense oligomers upregulate gene expression in mouse tissues. Nat. Biotechnol. 20, 1228–1233.

    Article  PubMed  CAS  Google Scholar 

  51. Nielsen, P. E., Egholm, M., and Buchardt, O. (1994) Sequence-specific transcription arrest by peptide nucleic acid bound to the DNA template strand. Gene 149, 139–145.

    Article  PubMed  CAS  Google Scholar 

  52. Nielsen, P. E., Egholm, M., Berg, R. H., and Buchardt, O. (1993) Sequence specific inhibition of DNA restriction enzyme cleavage by PNA. Nucleic Acids Res. 21, 197–200.

    Article  PubMed  CAS  Google Scholar 

  53. Vickers, T. A., Griffity, M. C., Ramasamy, K., Risen, L. M., and Freier, S. M. (1995) Inhibition of NF-κB specific transcriptional activation by PNA strand invasion. Nucleic Acids Res. 23, 3003–3008.

    Article  PubMed  CAS  Google Scholar 

  54. Demidov, V. V., Yavnilovich, M. V., Belotserkovskii, B. P., Frank-Kamenetskii, M. D., and Nielsen, P. E. (1995) Kinetics and mechanism of polyamide (“peptide”) nucleic acid binding to duplex DNA. Proc. Natl. Acad. Sci. USA 92, 2637–2641.

    Article  PubMed  CAS  Google Scholar 

  55. Bentin, T. and Nielsen, P. E. (1996) Enhanced peptide nucleic acid binding to supercoiled DNA: possible implications for DNA “breathing” dynamics. Biochemistry 35, 8863–8869.

    Article  PubMed  CAS  Google Scholar 

  56. Larsen, H. J. and Nielsen, P. E. (1996) Transcription-mediated binding of peptide nucleic acid (PNA) to double-stranded DNA: sequence-specific suicide transcription. Nucleic Acids Res. 24, 458–463.

    Article  PubMed  CAS  Google Scholar 

  57. Kaihatsu, K., Braasch, D. A., Cansizoglu, A., and Corey, D. R. (2002) Enhanced strand invasion by peptide nucleic acid-peptide conjugates. Biochemistry 41, 11,118–11,125.

    Article  CAS  Google Scholar 

  58. Zhang, X., Ishihara, T., and Corey, D. R. (2000) Strand invasion by mixed base PNAs and a PNA-peptide chimera. Nucleic Acids Res. 28, 3332–3338.

    Article  PubMed  CAS  Google Scholar 

  59. Bentin, T. and Nielsen, P. E. (2003) Superior duplex DNA strand invasion by acridine conjugated peptide nucleic acids. J. Am. Chem. Soc. 125, 6378–6379.

    Article  PubMed  CAS  Google Scholar 

  60. Boffa, L. C., Scarfi, S., Mariani, M. R., et al. (2000) Dihydrotestosterone as a selective cellular/nuclear localization vector for anti-gene peptide nucleic acid in prostatic carcinoma cells. Cancer Res. 60, 2258–2262.

    PubMed  CAS  Google Scholar 

  61. Boffa, L. C., Morris, P. L., Carpaneto, E. M., Louissaint, M., Allfrey, V. G. (1996) Invasion of the CAG triplet repeats by a complementary peptide nucleic acid inhibits transcription of the androgen receptor and TATA binding protein genes and correlates with refolding of an active nucleosome containing a unique AR gene sequence. J. Biol. Chem. 271, 13,223–13,228.

    Google Scholar 

  62. McMahon, B. M., Stewart, J. A., Bitner, M. D., Fauq, A., McCormick, D. J., and Richelson, E. (2002) Peptide nucleic acids specifically cause antigene effects in vivo by systemic injection. Life Sciences 71, 325–337.

    Article  PubMed  CAS  Google Scholar 

  63. Møllegaard, N. E., Buchardt, O., Egholm, M., and Nielsen, P. E. (1994) Peptide nucleic acid-DNA strand displacement loops as artificial transcription promoters. Proc. Natl. Acad. Sci. USA 91, 3892–3895.

    Article  PubMed  Google Scholar 

  64. Wang, G., Xu, X., Pace, B., et al. (1999) Peptide nucleic acid (PNA) binding-mediated induction of human ψ-globin gene expression. Nucleic Acids Res. 27, 2806–2813.

    Article  PubMed  CAS  Google Scholar 

  65. Wang, G., Jing, K., Balczon, R., and Xu, X. (2001) Defining the peptide nucleic acids (PNA) length requirement for PNA binding-induced transcription and gene expression. J. Mol. Biol. 313, 933–940.

    Article  PubMed  CAS  Google Scholar 

  66. Rogers, F. A., Vasquez, K. M., Egholm, M., and Glazer, P. M. (2002) Site-directed recombination via bifunctional PNA-DNA conjugates. Proc. Natl. Acad. Sci. USA 99, 16,695–16,700.

    Article  CAS  Google Scholar 

  67. Belotserkovskii, B. P. and Zarling, D. A. (2002) Peptide nucleic acid (PNA) facilitates multistranded hybrid formation between linear double-stranded DNA targets and RecA protein-coated complementary single-stranded DNA probes. Biochemistry 41, 3686–3692.

    Article  PubMed  CAS  Google Scholar 

  68. Good, L. and Nielsen, P. E. (1998) Inhibition of translation and bacterial growth by peptide nucleic acid targeted to ribosomal RNA. Proc. Natl. Acad. Sci. USA 95, 2073–2076.

    Article  PubMed  CAS  Google Scholar 

  69. Good, L., Sandberg, R., Larsson, O., Nielsen, P. E., and Wahlestedt, C. (2000) Antisense PNA effects in Escherichia coli are limited by the outer-membrane LPS layer. Microbiology 146, 2665–2670.

    PubMed  CAS  Google Scholar 

  70. Good, L., Awasthi, S. K., Dryselius, R., Larsson, O., and Nielsen, P. E. (2001) Bactericidal antisense effects of peptide-PNA conjugates. Nat. Biotechnol. 19, 360–364.

    Article  PubMed  CAS  Google Scholar 

  71. Eriksson, M., Nielsen, P. E., and Good, L. (2002) Cell permeabilization and uptake of antisense peptide-peptide nucleic acid (PNA) into Escherichia coli. J. Biol. Chem. 277, 7144–7147.

    Article  PubMed  CAS  Google Scholar 

  72. Stock, R. P., Olvera, A., Sanchez, R., et al. (2001) Inhibition of gene expression in Entamoeba histolytica with antisense peptide nucleic acid oligomers. Nat. Biotechnol. 19, 231–234.

    Article  PubMed  CAS  Google Scholar 

  73. Koppelhus, U., Zachar, V., Nielsen, P. E., Liu, X., Eugen-Olsen, J., and Ebbesen, P. (1997) Efficient in vitro inhibition of HIV-1 gag reverse transcription by peptide nucleic acid (PNA) at minimal ratios of PNA/RNA. Nucleic Acids Res. 25, 2167–2173.

    Article  PubMed  CAS  Google Scholar 

  74. Lee, R., Kaushik, N., Modak, M. J., Vinayak, R., and Pandey, V. N. (1998) Polyamide nucleic acid targeted to the primer binding site of the HIV-1 RNA genome blocks in vitro HIV-1 reverse transcription. Biochemistry 37, 900–910.

    Article  PubMed  CAS  Google Scholar 

  75. Boulmé, F., Freund, F., Moreau, S., et al. (1998) Modified (PNA, 2′-O-methyl and phosphoramidate) anti-TAR antisense oligonucleotides as strong and specific inhibitors of in vitro HIV-1 reverse transcription. Nucleic Acids Res. 26, 5492–5500.

    Article  PubMed  Google Scholar 

  76. Boulme, F., Freund, F., Gryaznov, S., Nielsen, P. E., Tarrago-Litvak, L., and Litvak, S. (2000) Study of HIV-2 primer-template initiation complex using antisense oligonucleotides. Eur. J. Biochem. 267, 2803–2811.

    Article  PubMed  CAS  Google Scholar 

  77. Mayhood, T., Kaushik, N., Pandey, P. K., Kashanchi, F., Deng, L., and Pandey, V. N. (2000) Inhibition of tat-mediated transactivation of HIV-1 LTR transcription by polyamide nucleic acid targeted to TAR hairpin element. Biochemistry 39, 11,532–11,539.

    Article  CAS  Google Scholar 

  78. Kaushik, N., Basu, A., Palumbo, P., Myers, R. L., and Pandey, V. N. (2002) Anti-TAR polyamide nucleotide analog conjugated with a membrane-permeating peptide inhibits human immunodeficiency virus type 1 production. J. Virol. 76, 3881–3891.

    Article  PubMed  CAS  Google Scholar 

  79. McMahon, B. M., Mays, D., Lipsky, J., Stewart, J. A., Fauq, A., and Richelson, E. (2002) Pharmacokinetics and tissue distribution of a peptide nucleic acid after intravenous administration. Antisense Nucleic Acid Drug Dev. 12, 65–70.

    Article  PubMed  CAS  Google Scholar 

  80. Kristensen, E. (2002) In vitro and in vivo studies on pharmacokinetics and metabolism of PNA constructs in rodents. In Peptide Nucleic Acids: Methods and Protocols (Nielsen, P. E., ed.). Humana Press, Totowa, NJ, pp. 259–269.

    Chapter  Google Scholar 

  81. Dolle, F., Boisgard, R., Hinnen, F., Hamzavi, R., Nielsen, P. E., and Tavitian, B. (2003)

  82. Biessen, E. A. L., Sliedregt-Bol, K., Hoen, P. A. C., et al. (2002) Design of a targeted peptide nucleic acid prodrug to inhibit hepatic human microsomal triglyceride transfer protein expression in hepatocytes. Bioconjug. Chem. 13, 295–302.

    Article  PubMed  CAS  Google Scholar 

  83. Hamzawi, R., Dolle, F., Tavitian, R., Dahl, O., and Nielsen, P. E. (2003) Modulation of the pharmacokinetic properties of PNA: preparation of galactosyl, mannosyl, fucosyl, N-acetyl-galactosaminyl and N-acetyl-glucosaminyl derivatives of aminoethylglycin peptide nucleic acid monomers and their incorporation into PNA oligomer.

  84. Tyler, B. M., Jansen, K., McCormick, D. J., et al. (1999) Peptide nucleic acids targeted to the neurotensin receptor and administered i.p. cross the blood-brain barrier and specifically reduce gene expression. Proc. Natl. Acad. Sci. USA 96, 7053–7058.

    Article  PubMed  CAS  Google Scholar 

  85. Zelphati, O., Liang, X., Hobart, P., and Felgner, P. L. (1999) Gene chemistry: functionally and conformationally intact fluorescent plasmid DNA. Hum. Gene Ther. 10, 15–24.

    Article  PubMed  CAS  Google Scholar 

  86. Brandén, L. J., Christensson, B., and Smith, C. I. E. (2001) In vivo nuclear delivery of oligonucleotides via hybridizing bifunctional peptides. Gene Ther. 8, 84–87.

    Article  PubMed  Google Scholar 

  87. Brandén, L. J., Mohamed, A. J., and Smith, C. I. E. (1999) A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat. Biotechnol. 17, 784–787.

    Article  PubMed  Google Scholar 

  88. Liang, K. W., Hoffman, E. P., and Huang, L. (2000) Targeted delivery of plasmid DNA to myogenic cells via transferrin-conjugated peptide nucleic acid. Mol. Ther. 1, 236–243.

    Article  PubMed  CAS  Google Scholar 

  89. Rebuffat, A. G., Nawrocki, A. R., Nielsen, P. E., et al. (2002) Gene delivery by a steroid-peptide nucleic acid conjugate. FASEB J. 16, 1426–1428.

    PubMed  CAS  Google Scholar 

  90. Nielsen, P. E. (1993) Peptide nucleic acid (PNA): A model structure for the primordial genetic material. Orig. Life Evol. Biosph. 23, 323–327.

    Article  PubMed  CAS  Google Scholar 

  91. Miller, S. L. (1953) A production of amino acids under possible primitive earth conditions. Science 117, 528, 529.

    Article  PubMed  CAS  Google Scholar 

  92. Oro, J. (1960) Synthesis of adenine from ammonium cyanide. Biochem. Biophys. Res. Commun. 2, 407–412.

    Article  Google Scholar 

  93. Böhler, C., Nielsen, P. E., and Orgel, L. E. (1995) Template switching between PNA and RNA oligonucleotides. Nature 376, 578–581.

    Article  PubMed  Google Scholar 

  94. Schmidt, J. G., Nielsen, P. E., and Orgel, L. E. (1997) Information transfer from peptide nucleic acids to RNA by template-directed syntheses. Nucleic Acids Res. 25, 4797–4802.

    Article  PubMed  CAS  Google Scholar 

  95. Schmidt, J. G., Christensen, L., Nielsen, P. E., and Orgel, L. E. (1997) Information transfer from DNA to peptide nucleic acids by template-directed syntheses. Nucleic Acids Res. 25, 4792–4796.

    Article  PubMed  CAS  Google Scholar 

  96. Nelson, K. E., Levy, M., and Miller, S. L. (2000) Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc. Natl. Acad. Sci. USA 97, 3868–3871.

    Article  PubMed  CAS  Google Scholar 

  97. Lansdorp, P. M., Verwoerd, N. P., Van de Rijke, F. M., et al. (1996) Heterogeneity in telomere length of human chromosomes. Hum. Mol. Genet. 5, 685–691.

    Article  PubMed  CAS  Google Scholar 

  98. Zijlmans, M. J. M., Martens, U. M., Poon, S. S. S., et al. (1997) Telomeres in the mouse have large interchromosomal variations in the number of T2AG3 repeats. Proc. Natl. Acad. Sci. USA 94, 7423–7428.

    Article  PubMed  CAS  Google Scholar 

  99. Mathioudakis, G., Storb, R., McSweeney, P. A., et al. (2000) Polyclonal hematopoiesis with variable telomere shortening in human long-term allogeneic marrow graft recipients. Blood 96, 3991–3994.

    PubMed  CAS  Google Scholar 

  100. Chen, C., Wu, B., Wie, T., Egholm, M., and Strauss, W. M. (2000) Unique chromosome identification and sequence-specific structural analysis with short PNA oligomers. Mamm. Genome 11, 384–391.

    Article  PubMed  CAS  Google Scholar 

  101. Hongmanee, P., Stender, H., and Rasmussen, O. F. (2001) Evaluation of a fluorescence in situ hybridization assay for differentiation between tuberculous and nontuberculous Mycobacterium species in smears of Lowenstein-Jensen and mycobacteria growth indicator tube cultures using peptide nucleic acid probes. J. Clin. Microbiol. 39, 1032–1035.

    Article  PubMed  CAS  Google Scholar 

  102. Drobniewski, F. A., More, P. G., and Harris, G. S. (2000) Differentiation of Mycobacterium tuberculosis complex and nontuberculous mycobacterial liquid cultures by using peptide nucleic acid-fluorescence in situ hybridization probes. J. Clin. Microbiol. 38, 444–447.

    PubMed  CAS  Google Scholar 

  103. Stender, H., Mollerup, T. A., Lund, K., Petersen, K. H., Hongmanee, P., and Godtfredsen, S. E. (1999) Direct detection and identification of Mycobacterium tuberculosis in smear-positive sputum samples by fluorescence in situ hybridization (FISH) using peptide nucleic acid (PNA) probes. Int. J. Tuberc. Lung Dis. 3, 830–837.

    PubMed  CAS  Google Scholar 

  104. Perry-O’Keefe, H., Stender, H., Broomer, A., Oliveira, K., Coull, J., and Hyldig-Nielsen, J. J. (2001) Filter-based PNA in situ hybridization for rapid detection, identification and enumeration of specific micro-organisms. J. Appl. Microbiol. 90, 180–189.

    Article  PubMed  CAS  Google Scholar 

  105. Stender, H., Oliveira, K., Rigby, S., Bargoot, F., and Coull, J. (2001) Rapid detection, identification, and enumeration of Escherichia coli by fluorescence in situ hybridization using an array scanner. J. Microbiol. Methods 45, 31–39.

    Article  PubMed  CAS  Google Scholar 

  106. Stender, H., Sage, A., Oliveira, K., Broomer, A. J., Young, B., and Coull, J. (2001) Combination of ATP-bioluminescence and PNA probes allows rapid total counts and identification of specific microorganisms in mixed populations. J. Microbiol. Methods 46, 69–75.

    Article  PubMed  CAS  Google Scholar 

  107. Stender, H., Kurtzman, C., Hyldig-Nielsen, J. J., et al. (2001) Identification of Dekkera bruxellensis (Brettanomyces) from wine by fluorescence in situ hybridization using peptide nucleic acid probes. Appl. Environ. Microbiol. 67, 938–941.

    Article  PubMed  CAS  Google Scholar 

  108. Worden, A. Z., Chisholm, S. W., and Binder, B. J. (2000) In situ hybridization of Prochlorococcus and Synechococcus (Marine cyanobacteria) spp. with rRNA-targeted peptide nucleic acid probes. Appl. Environ. Microbiol. 66, 284–289.

    Article  PubMed  CAS  Google Scholar 

  109. Ørum, H., Nielsen, P. E., Egholm, M., Berg, R. H., Buchardt, O., and Stanley, C. (1993) Single base pair mutation analysis by PNA directed PCR clamping. Nucleic Acids Res. 21, 5332–5336.

    Article  PubMed  Google Scholar 

  110. Behn, M., and Schuermann, M. (1998) Sensitive detection of p53 gene mutations by a mutant enriched PCR-SSCP technique. Nucleic Acids Res. 26, 1356–1358.

    Article  PubMed  CAS  Google Scholar 

  111. Murdock, D. G., Christacos, N. C., and Wallace, D. C. (2000) The age-related accumulation of a mitochondrial DNA control region mutation in muscle, but not brain, detected by a sensitive PNA-directed PCR clamping based method. Nucleic Acids Res. 28, 4350–4355.

    Article  PubMed  CAS  Google Scholar 

  112. Myal, Y., Blanchard, A., Watson, P., Corrin, M., Shiu, R., and Iwasiow, B. (2000) Detection of genetic point mutations by peptide nucleic acid-mediated polymerase chain reaction clamping using paraffin-embedded specimens. Anal. Biochem. 285, 169–172.

    Article  PubMed  CAS  Google Scholar 

  113. Von Wintzingerode, F., Landt, O., Ehrlich, A., and Gobel, U. B. (2000) Peptide nucleic acid-mediated PCR clamping as a useful supplement in the determination of microbial diversity. Appl. Environ. Microbiol. 66, 549–557.

    Article  Google Scholar 

  114. Behn, M., Thiede, C., Neubauer, A., Pankow, W., and Schuermann, M. (2000) Facilitated detection of oncogene mutations from exfoliated tissue material by a PNA-mediated “enriched PCR” protocol. J. Pathol. 190, 69–75.

    Article  PubMed  CAS  Google Scholar 

  115. Ortiz, E., Estrada, G., and Lizardi, P. M. (1998) PNA molecular beacons for rapid detection of PCR amplicons. Mol. Cell. Probes 12, 219–226.

    Article  PubMed  CAS  Google Scholar 

  116. Kuhn, H., Demidov, V. V., Gildea, B. D., Fiandaca, M. J., Coull, J. C., and Frank-Kamenetskii, M. D. (2001) PNA beacons for duplex DNA. Antisense Nucleic Acid Drug Dev. 11, 265–270.

    Article  PubMed  CAS  Google Scholar 

  117. Isacsson, J., Cao, H., Ohlsson, L., et al. (2000) Rapid and specific detection of PCR products using light-up probes. Mol. Cell. Probes 14, 321–328.

    Article  PubMed  CAS  Google Scholar 

  118. Svanvik, N., Westman, G., Wang, D., and Kubista, M. (2000) Light-up probes: thiazole orange-conjugated peptide nucleic acid for detection of target nucleic acid in homogeneous solution. Anal. Biochem. 281, 26–35.

    Article  PubMed  CAS  Google Scholar 

  119. Svanvik, N., Nygren, J., Westman, G., and Kubista, M. (2001) Free-probe fluorescence of light-up probes. J. Am. Chem. Soc. 123, 803–809.

    Article  PubMed  CAS  Google Scholar 

  120. Griffin, T., Tang, W., and Smith, L. M. (1997) Genetic analysis by peptide nucleic acid affinity MALDI-TOF mass spectrometry. Nat. Biotechnol. 15, 1368–1370.

    Article  PubMed  CAS  Google Scholar 

  121. Ørum, H., Nielsen, P. E., Jørgensen, M., Larsson, C., Stanley, C., and Koch, T. (1995) Sequence-specific purification of nucleic acids by PNA-controlled hybrid selection. BioTechniques 19, 472–480.

    PubMed  Google Scholar 

  122. Seeger, C., Batz, H.-G., and Ørum, H. (1997) PNA-mediated purification of PCR amplifiable human genomic DNA from whole blood. BioTechniques 23, 512–516.

    PubMed  CAS  Google Scholar 

  123. Chandler, D. P., Stults, J. R., Anderson, K. K., Cebula, S., Schuck, B. L., and Brockman, F. J. (2000) Affinity capture and recovery of DNA at femtomolar concentrations with peptide nucleic acid probes. Anal. Biochem. 283, 241–249.

    Article  PubMed  CAS  Google Scholar 

  124. Chandler, D. P., Stults, J. R., Cebula, S., et al. (2000) Affinity purification of DNA and RNA from environmental samples with peptide nucleic acid clamps. Appl. Environ. Microbiol. 66, 3438–3445.

    Article  PubMed  CAS  Google Scholar 

  125. Scarfi, S., Gasparini, A., Damonte, G., and Benatti, U. (1997) Synthesis, uptake, and intracellular metabolism of a hydrophobic tetrapeptide-peptide nucleic acid (PNA)-biotin molecule. Biochem. Biophys. Res. Commun. 236, 323–326.

    Article  PubMed  CAS  Google Scholar 

  126. Chiarantini, L., Cerasi, A., Fraternale, A., et al. (2002) Inhibition of macrophage iNOS by selective targeting of antisense PNA. Biochemistry 41, 8471–8477.

    Article  PubMed  CAS  Google Scholar 

  127. Villa, R., Folini, M., Lualdi, S., Veronese, S., Daidone, M. G., and Zaffaroni, N. (2000) Inhibition of telomerase activity by a cell-penetrating peptide nucleic acid construct in human melanoma cells. FEBS Lett. 473, 241–248.

    Article  PubMed  CAS  Google Scholar 

  128. Zhang, X., Simmons, C. G., and Corey, D. R. (2001) Liver cell specific targeting of peptide nucleic acid oligomers. Bioorg. Med. Chem. Lett. 11, 1269–1272.

    Article  PubMed  CAS  Google Scholar 

  129. Chinnery, P. F., Taylor, R. W., Diekert, K., Lill, R., Turnbull, D. M., and Lightowlers, R. N. (1999) Peptide nucleic acid delivery to human mitochondria. Gene Ther. 6, 1919–1928.

    Article  PubMed  CAS  Google Scholar 

  130. Muratovska, A., Lightowlers, R. N., Taylor, R. W., et al. (2001) Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Res. 29, 1852–1863.

    Article  PubMed  CAS  Google Scholar 

  131. Kaushik, N., Basu, A., Palumbo, P., Myers, R. L., and Pandey, V. N. (2002) Anti-TAR polyamide nucleotide analog conjugated with a membrane-permeating peptide inhibits human immunodeficiency virus type 1 production. J. Virol. 76, 3881–3891.

    Article  PubMed  CAS  Google Scholar 

  132. Kaushik, N., Basu, A., and Pandey, V. N. (2002) Inhibition of HIV-1 replication by anti-trans-activation responsive polyamide nucleotide analog. Antiviral Res. 56, 13–27.

    Article  PubMed  CAS  Google Scholar 

  133. Kaushik, N. and Pandey, V. N. (2002) PNA targeting the phosphate-buffered saline (PBS) and A-loop sequences of HIV-1 genome destabilizes packaged tRNA3Lys in the virions and inhibits HIV-1 replication. Virology 303, 297–308.

    Article  PubMed  CAS  Google Scholar 

  134. Richard, J. P., Melikov, K., Vives, E., et al. (2003) Cell-penetrating peptides. J. Biol. Chem. 278, 585–590.

    Article  PubMed  CAS  Google Scholar 

  135. Braun, K., Peschke, P., Pipkorn, R., et al. (2002) A biological transporter for the delivery of peptide nucleic acids (PNAs) to the nuclear compartment of living cells. J. Mol. Biol. 318, 237–243.

    Article  PubMed  CAS  Google Scholar 

  136. Rapozzi, V., Burm, B. E. A., Cogoi, S., et al. (2002) Antiproliferative effect in chronic myeloid leukaemia cells by antisense peptide nucleic acids. Nucleic Acids Res. 30, 3712–3721.

    Article  PubMed  CAS  Google Scholar 

  137. Sun, L., Fuselier, J. A., Murphy, W. A., and Coy, D. H. (2002) Antisense peptide nucleic acids conjugated to somatostatin analogs and targeted at the n-myc oncogene display enhanced cytotoxicity to human neuroblastoma IMR32 cells expressing somatostatin receptors. Peptides 23, 1557–1565.

    Article  PubMed  Google Scholar 

  138. Adlerz, L., Soomets, U., Holmlund, L., Viirlaid, S., Langel, Ü., and Iverfeldt, K. (2003). Down-regulation of amyloid precursor protein by peptide nucleic acid oligomer in cultured rat primary neurons and astrocytes. Neurosci Lett. 336, 55–59.

    Article  PubMed  CAS  Google Scholar 

  139. Good, L. and Nielsen, P. E. (1998) Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nat. Biotechnol. 16, 355–358.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E. Nielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, P.E. PNA technology. Mol Biotechnol 26, 233–248 (2004). https://doi.org/10.1385/MB:26:3:233

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:26:3:233

Index Entries

Navigation