Skip to main content
Log in

Recombinant protein production in yeasts

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Recombinant DNA (rDNA) technologies (genetic, protein, and metabolic engineering) allow the production of a wide range of peptides, proteins, and biochemicals from naturally nonproducing cells. These technologies, now approx 25 yr old, have become one of the most important technologies developed in the twentieth century. Pharmaceutical products and industrial enzymes were the first biotech products on the world market made by means of rDNA. Despite important advances in rDNA applications in mammalian cells, yeasts still represent attractive hosts for the production of heterologous proteins. In this review we summarize advantages and limitations of the main and most promising yeast hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hitzeman, R. A., Hagie, F. E., Levine, H. L., Goeddel, D. V., Ammerer, G., and Hall, B. D. (1981) Expression of a human gene for interferon in yeast. Nature 293, 717–722.

    Article  PubMed  CAS  Google Scholar 

  2. Reiser, J., Glumoff, V., Kalin, M., and Ochsner, U. (1990) Transfer and expression of heterologous genes in yeasts other than Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 43, 75–102.

    PubMed  CAS  Google Scholar 

  3. Romanos, M. A., Scorer, C. A., and Clare, J. J. (1992) Foreign gene expression in yeast: a review. Yeast 8, 423–488.

    Article  PubMed  CAS  Google Scholar 

  4. Sudbery, P. E., Gleeson, M. A., Veale, R. A., Ledeboer, A. M., and Zoetmulder, M. C. (1988) Hansenula polymorpha as a novel yeast system for the expression of heterologous genes. Biochem. Soc. Trans. 16, 1081–1083.

    PubMed  CAS  Google Scholar 

  5. Thill, G., Davis, G., Stillman, C., et al. (1987) The methylotrophic yeast Pichia pastoris as a host for heterologous protein production. In: Proceedings of the Fifth International Symposium on Microbial Growth on C1 Compounds (van Verseveld, H. W., Duine, J. A., eds.) Nijhoff, Dordrecht, pp. 289–296.

    Google Scholar 

  6. Blondeau, K., Boze, H., Jung, G., Moulin, G., and Galzy, P. (1994) Physiological approach to heterologous human serum albumin production by Kluyveromyces lactis in chemostat culture. Yeast 10, 1297–1303.

    Article  PubMed  CAS  Google Scholar 

  7. Gellissen, G. and Hollenberg, C. P. (1997) Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis—a review. Gene 190, 87–97.

    Article  PubMed  CAS  Google Scholar 

  8. Muller, S., Sandal, T., Kamp-Hansen, P., and Dalboge, H. (1998) Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Klyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast 14, 1267–1283.

    Article  PubMed  CAS  Google Scholar 

  9. Raymond, C. K., Bukowski, T., Holderman, S. D., Ching, A. F. T., Vanaja, E., and Stamm, M. R. (1998) Development of the methylotrophic yeast, Pichia methanolica, for the expression of the 65-kilodalton isoform of human glutamate decarboxylase. Yeast 14, 11–23.

    Article  PubMed  CAS  Google Scholar 

  10. Den Haan, R. and Van Zyl, W. H. (2001) Differential expression of the Trichoderma reesei beta-xylanase II (xyn2) gene in the xylose-fermenting yeast Pichia stipitis. Appl. Microbiol. Biotechnol. 57, 521–527.

    Article  Google Scholar 

  11. Hohenblum, H., Naschberger, S., Weik, R., Katinger, H. and Mattanovich, D. (2001) Production of recombinant human trypsinogen in Escherichia coli and Pichia pastoris. A comparison of expression systems. In: Recombinant Protein Production With Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology (Merten, O.-W., Mattanovich, D., Lang, C., et al., eds.) Kluwer Acad. Publ., Dortrecht, NL, pp. 339–346.

    Google Scholar 

  12. Romanos, M. (1995) Advances in the use of Pichia pastoris for high-level gene expression. Curr. Opin. Biotechnol. 6, 527–533.

    Article  CAS  Google Scholar 

  13. Ogawa, Y., Tatsumi, H., Murakami, S., et al. (1990) Secretion of Aspergillus oryzae alkaline protease in an osmophilic yeast, Zygosaccharomyces rouxii. Agric. Biol. Chem. 54, 2521–2529.

    PubMed  CAS  Google Scholar 

  14. Brambilla, L., Ranzi, B. M., Vai, M., Alberghina, L., and Porro, D. (2000) Production of heterologous proteins from Zygosaccharomyces bailii. International patent application WO 00/41477.

  15. Branduardi, P., Valli, M., Alberghina, L., and Porro, D. (2004) Process for expression and secretion of proteins by the non-conventional yeast Zygosaccharomyces bailii. International patent application WO 2004/042036.

  16. Branduardi, P., Valli, M., Brambilla, L., Sauer, M., Alberghina, L., and Porro, D. (2004) The yeast Zygosaccharomyces bailii: a new host for heterologous protein production, secretion and for metabolic engineering applications. FEMS Yeast Res. 4, 493–504.

    Article  PubMed  CAS  Google Scholar 

  17. Sakai, Y., Rogi, T., Takeuchi, R., Kato, N., and Tani, Y. (1995) Expression of Saccharomyces adenylate kinase gene in Candida boidinii under the regulation of its alcohol oxidase promoter. Appl. Microbiol. Biotechnol. 42, 860–864.

    Article  PubMed  CAS  Google Scholar 

  18. Buckholz, R. G. and Gleeson, M. A. (1991) Yeast systems for the commercial production of heterologous proteins. Biotechnology (N Y) 9, 1067–1072.

    Article  CAS  Google Scholar 

  19. Sudbery, P. E. (1996) The expression of recombinant proteins in yeasts. Curr. Opin. Biotechnol. 7, 517–524.

    Article  PubMed  CAS  Google Scholar 

  20. Gellissen, G. (2000) Heterologous protein production in methylotrophic yeasts. Appl. Microbiol. Biotechnol. 54, 741–750.

    Article  PubMed  CAS  Google Scholar 

  21. Dominguez, A., Ferminan, E., Sanchez, M., et al. (1998) Non-conventional yeasts as hosts for heterologous protein production. Int. Microbiol. 1, 131–142.

    PubMed  CAS  Google Scholar 

  22. Cereghino, J. L. and Cregg J. M. (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24, 45–66.

    Article  PubMed  CAS  Google Scholar 

  23. Giga-Hama, Y. and Kumagai, H. (1999) Expression system for foreign genes using the fission yeast Schizosaccharomyces pombe. Biotechnol. Appl. Biochem. 30, 235–244.

    PubMed  CAS  Google Scholar 

  24. Kurtzman, C. P. (2003) Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res. 4, 233–245.

    Article  PubMed  CAS  Google Scholar 

  25. Makdesi, A. K. and Beuchat, L. R. (1996) Evaluation of media for enumerating heat-stressed, benzoate-resistant Zygosaccharomyces bailii. Int. J. Food Microbiol. 33, 169–181.

    Article  PubMed  CAS  Google Scholar 

  26. Sousa, M. J., Miranda, L., Corte-Real, M., and Leao, C. (1996) Transport of acetic acid in Zygosaccharomyces bailii: effects of ethanol and their implications on the resistance of the yeast to acidic environments. Appl. Environ. Microbiol. 62, 3152–3157.

    PubMed  CAS  Google Scholar 

  27. Wegener, G. H. and Harder, W. (1987) Methylotrophic yeasts—1986. Antonie van Leeuwenhoek 53, 29–36.

    Article  Google Scholar 

  28. Cregg, J. M., Cereghino, J. L., Shi, J., and Higgins, D. R. (2000) Recombinant protein expression in Pichia pastoris. Mol. Biotechnol. 16, 23–52.

    Article  PubMed  CAS  Google Scholar 

  29. Shen, S., Sulter, G., Jeffries, T. W., and Cregg, J. M. (1998) A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene 216, 93–102.

    Article  PubMed  CAS  Google Scholar 

  30. Resina, D., Serrano, A., Valero, F., and Ferrer, P. (2004) Expression of a Rhizopus oryzae lipase in Pichia pastoris under control of the nitrogen source-regulated formaldehyde dehydrogenase promoter. J. Biotechnol. 109, 103–113.

    Article  PubMed  CAS  Google Scholar 

  31. Waterham, H. R., Digan, M. E., Koutz, P. J., Lair, S. V., and Cregg, J. M. (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186, 37–44.

    Article  PubMed  CAS  Google Scholar 

  32. Hollenberg, C. P. and Gellissen, G. (1997) Production of recombinant proteins by methylotrophic yeasts. Curr. Opin. Biotechnol. 8, 554–560.

    Article  PubMed  CAS  Google Scholar 

  33. Burgers, P. M. and Percival, K. J. (1987) Transformation of yeast spheroplasts without cell fusion. Anal. Biochem. 163, 391–397.

    Article  PubMed  CAS  Google Scholar 

  34. Gietz, R. D. and Woods, R. A. (2002) Transformation of yeast by the LiAc/ss carrier DNA/PEG. Meth. Enzymol. 350, 87–96.

    Article  PubMed  CAS  Google Scholar 

  35. Sanchez, M., Iglesias, F. J., Santamaria, C., and Dominguez, A. (1993) Transformation of Kluyveromyces lactis by electroporation. Appl. Environm. Microbiol. 59, 2087–2092.

    Google Scholar 

  36. Hasslacher, M., Schall, M., Hayn, M., et al. (1997) High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts. Protein Expr. Purif. 11, 61–71.

    Article  PubMed  CAS  Google Scholar 

  37. Clare, J. J., Rayment, F. B., Ballantine, S. P., Sreekrishna, K., and Romanos, M. A. (1991) High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Bio/Technology 9, 455–460.

    Article  PubMed  CAS  Google Scholar 

  38. Richardson, P. T., Roberts, L. M., Gould, J. H., and Lord, J. M. (1988) The expression of functional ricin B-chain in Saccharomyces cerevisiae. Biochim Biophys Acta 950, 385–394.

    PubMed  CAS  Google Scholar 

  39. Binder, M., Schanz, M., and Hartig, A. (1991) Vector-mediated overexpression of catalase A in the yeast Saccharomyces cerevisiae induces inclusion body formation. Eur. J. Cell Biol. 54, 305–312.

    PubMed  CAS  Google Scholar 

  40. Choi, S. Y., Lee, S. Y., and Bock, R. M. (1993) High level expression in Saccharomyces cerevisiae of an artificial gene encoding a repeated tripeptide aspartyl-phenylalanyl-lysine. J. Biotechnol. 30, 211–223.

    Article  PubMed  CAS  Google Scholar 

  41. Weik, R., Francky, A., Striedner, G., Raspor, P., Bayer, K., and Mattanovich, D. (1998) Recombinant expression of alliin lyase from garlic (Allium sativum) in bacteria and yeasts. Planta Med. 64, 387–388.

    Article  PubMed  CAS  Google Scholar 

  42. Barr, K. A., Hopkins, S. A., and Sreekrishna, K. (1992) Protocol for efficient secretion of HSA developed from Pichia pastoris. Pharm. Eng. 12, 48–51.

    Google Scholar 

  43. Kauffman, K. J., Pridgen, E. M., Doyle, F. J. 3rd, Dhurjati, P. S., and Robinson, A. S. (2002) Decreased protein expression and intermittent recoveries in BiP levels result from cellular stress during heterologous protein expression in Saccharomyces cerevisiae. Biotechnol. Prog. 18, 942–950.

    Article  PubMed  CAS  Google Scholar 

  44. Hohenblum, H., Borth, N., and Mattanovich, D. (2003) Assessing viability and cell-associated product of recombinant protein producing Pichia pastoris with flow cytometry. J. Biotechnol. 102, 281–290.

    Article  PubMed  CAS  Google Scholar 

  45. Patil, C. and Walter, P. (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr. Opin. Cell Biol. 13, 349–355.

    Article  PubMed  CAS  Google Scholar 

  46. Welihinda, A. A., Tirasophon, W., and Kaufman, R. J. (1999) The cellular response to protein misfolding in the endoplasmic reticulum. Gene Expr. 7, 293–300.

    PubMed  CAS  Google Scholar 

  47. Casagrande, R., Stern, P., Diehn, M., et al. (2000) Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway. Mol. Cell 5, 729–735.

    Article  PubMed  CAS  Google Scholar 

  48. Hohenblum, H., Gasser, B., Maurer, M., Borth, N., and Mattanovich, D. (2004) Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol. Bioeng. 85, 367–375.

    Article  PubMed  CAS  Google Scholar 

  49. Valkonen, M., Penttila, M., and Saloheimo, M. (2003) Effects of inactivation and constitutive expression of the unfolded-protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69, 2065–2072.

    Article  PubMed  CAS  Google Scholar 

  50. Pakula, T. M., Laxell, M., Huuskonen, A., Uusitalo, J., Saloheimo, M., and Penttila, M. (2003) The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. Evidence for down-regulation of genes that encode secreted proteins in the stressed cells. J. Biol. Chem. 278, 45,011–45,020.

    Article  CAS  Google Scholar 

  51. Vai, M., Brambilla, L., Orlandi, I., et al. (2000) Improved secretion of native human insulin-like growth factor 1 from gas1 mutant Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 66, 5477–5479.

    Article  PubMed  CAS  Google Scholar 

  52. Gemmill, T. R. and Trimble, R. B. (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim. Biophys. Acta. 1426, 227–237.

    PubMed  CAS  Google Scholar 

  53. Nakanishi-Shindo, Y., Nakayama, K., Tanaka, A., Toda, Y., and Jigami, Y. (1993) Structure of the N-linked oligosaccharides that show the complete loss of a-1,6-polymannose outer chain from Och1, Och1 Mnn1 and Och1 Mnn1 Alg3 mutants of Saccharomyces cerevisiae. J. Biol. Chem. 268, 26338–26345.

    PubMed  CAS  Google Scholar 

  54. Martinet, W., Maras, M., Saelens, X., Jou, W. M., and Contreras, R. (1998) Modification of the protein glycosylation pathway in the methylotrophic yeast Pichia pastoris. Biotechnol. Lett. 20, 1171–1177.

    Article  CAS  Google Scholar 

  55. Schwientek, T., Narimatsu, H., and Ernst, J. F. (1996) Golgi localization and in vivo activity of a mammalian glycosyltransferase (human b-1,4-galactosyltransferase) in yeast. J. Biol. Chem. 271, 3398–3405.

    Article  PubMed  CAS  Google Scholar 

  56. Choi, B. K., Bobrowicz, P., Davidson, R. C., et al. (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. PNAS USA 100, 5022–5027.

    Article  PubMed  CAS  Google Scholar 

  57. Hamilton, S. R., Bobrowicz, P., Bobrowicz, B., et al. (2003) Production of complex human glycoproteins in yeast. Science 310, 1244–1246.

    Article  CAS  Google Scholar 

  58. Bobrowicz, P., Davidson, R. C., Li, H., et al. (2004) Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris—production of complex humanised glycoproteins with terminal galactose. Glycobiol. 14, 757–766.

    Article  CAS  Google Scholar 

  59. Vervecken, W., Kaigorodov, V., Callewaert, N., Geysens, S., De Vusser, K., and Contreras, R. (2004) In vivo synthesis of mammalian-like hybrid-type N-glycans in Pichia pastoris. Appl. Environ. Microbiol. 70, 2639–2646.

    Article  PubMed  CAS  Google Scholar 

  60. Wildt, S. and Gerngross, T. U. (2005) The humanization of N-glycosylation pathways in yeast. Nat. Rev. Microbiol. 3, 119–128.

    Article  PubMed  CAS  Google Scholar 

  61. Sumi, A., Okuyama, K., Kobayashi, K., Ohtani, W., Ohmura, T., and Yokoyama, K. (1999) Purification of recombinant human serum albumin. Efficient purification using STREAMLINE. Bioseparation 8, 195–200.

    Article  PubMed  CAS  Google Scholar 

  62. Mattanovich, D., Gasser, B., Hohenblum, H., and Sauer, M. (2004) Stress in recombinant protein producing yeasts. J. Biotechnol. 113, 121–135.

    Article  PubMed  CAS  Google Scholar 

  63. Sauer, M., Branduardi, P., Gasser, B., Valli, M., Maurer, M., Porro, D., and Mattanovich, D. (2004) Differential gene expression in recombinant Pichia pastoris analysed by heterologous DNA microarray hybridization. Microb. Cell Fact. 3, 17.

    Article  PubMed  CAS  Google Scholar 

  64. Rautio, J., Barken, K. B., Lahdenperä, J., Breitenstein, A., Molin, S., and Neubauer, P. (2003) Sandwich hybridisation assay for quantitative detection of yeast RNAs in crude cell lysates. Microb. Cell Fact. 2, 4.

    Article  PubMed  Google Scholar 

  65. Weik, R., Striedner, G., Francky, A., Raspor, P., Bayer, K., and Mattanovich, D. (1999) Induction of oxidofermentative ethanol formation in recombinant cells of Saccharomyces cerevisiae yeasts. Food Technol. Biotechnol. 37, 191–194.

    CAS  Google Scholar 

  66. Hong, F., Meinander, N. Q., and Jonsson, L. J. (2002) Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris. Biotechnol. Bioeng. 79, 438–449.

    Article  PubMed  CAS  Google Scholar 

  67. Zhang, W., Smith, L. A., Plantz, B. A., Schlegel, V. L., and Meagher, M. M. (2002) Design of methanol feed control in Pichia pastoris fermentations based upon a growth model. Biotechnol. Prog. 18, 1392–1399.

    Article  PubMed  CAS  Google Scholar 

  68. Jahic, M., Wallberg, F., Bollok, M., Garcia, P., and Enfors, S-O. (2003) Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures. Microb. Cell Fact. 2, 6.

    Article  PubMed  Google Scholar 

  69. Loewen, M. C., Liu, X., Davies, P. L., and Daugulis, A. J. (1997). Biosynthetic production of type II fish antifreeze protein: fermentation by Pichia pastoris. Appl. Microbiol. Biotechnol. 48, 480–486.

    Article  PubMed  CAS  Google Scholar 

  70. Curvers, S., Brixius, P., Klauser, T., Thommes, J., Weuster-Botz, D., Takors, R., and Wandrey, C. (2001) Human chymotrypsinogen B production with Pichia pastoris by integrated development of fermentation and downstream processing. Part 1. Fermentation. Biotechnol. Prog. 17, 495–502.

    Article  PubMed  CAS  Google Scholar 

  71. Goodey, A. R. (1993) The production of heterologous plasma proteins. Trends Biotechnol. 11, 430–433.

    Article  PubMed  CAS  Google Scholar 

  72. Porro, D., Martegani, E., Ranzi, B. M., and Alberghina, L. (1991) Heterologous gene expression in continuous cultures of budding yeast. Appl. Microbiol. Biotechnol. 34, 632–636.

    Article  PubMed  CAS  Google Scholar 

  73. Stephanopoulos, G., Aristodou, A., and Nielsen, J. (1998) Metabolic Engineering. Academic Press, Inc., San Diego, Calif.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Porro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porro, D., Sauer, M., Branduardi, P. et al. Recombinant protein production in yeasts. Mol Biotechnol 31, 245–259 (2005). https://doi.org/10.1385/MB:31:3:245

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:31:3:245

Index Entries

Navigation