Skip to main content
Log in

Transcriptome and proteome profiling to understanding the biology of high productivity CHO cells

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A combined transcriptome and proteome analysis was carried out to identify key genes and proteins differentially expressed in Chinese hamster ovary (CHO) cells producing high and low levels of dhfr-GFP fusion protein. Comparison of transcript levels was performed using a proprietary 15 K CHO cDNA microarray chip, whereas proteomic analysis was perfomed using iTRAQ quantitative protein profiling technique. Microarray analysis revealed 77 differentially expressed genes, with 53 genes upregulated and 24 genes downregulated. Proteomic analysis gave 75 and 80 proteins for the midexponential and stationary phase, respectively. Although there was a general lack of correlation between mRNA levels and quantitated protein abundance, results from both datasets concurred on groups of proteins/genes based on functional categorization. A number of genes (20%) and proteins (45 and 23%) were involved in processes related to protein biosynthesis. We also identified three genes/proteins involved in chromatin modification. Enzymes responsible for opening up chromatin, Hmgn3 and Hmgb1, were upregulated whereas enzymes that condense chromatin, histone H1.2, were downregulated. Genes and proteins that promote cell growth (Igfbp4, Ptma, S100a6, and Lgals3) were downregulated, whereas those that deter cell growth (Ccng2, Gsg2, and S100a11) were upregulated. Other main groups of genes and proteins include carbohydrate metabolism, signal transduction, and transport. Our findings show that an integrated genomic and proteomics approach can be effectively utilized to monitor transcriptional and posttranscriptional events of mammalian cells in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chu, L. and Robinson, D. K. (2001) Industrial choices for protein production by large scale cell culture. Curr. Opin. Biotechnol. 12, 180–187.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson, D. C. and Krummen, L. (2002) Recombinant protein expression for therapeutic applications. Curr. Opin. Biotechnol. 13, 117–123.

    Article  Google Scholar 

  3. Sautter, K. and Enenkel, B. (2005) Selection of high-producing CHO cells using NPT selection marker with reduced enzyme activity. Biotechnol. Bioeng. 89, 530–538.

    Article  PubMed  CAS  Google Scholar 

  4. Brezinsky, S. C., Chiang, G. G., Szilvasi, A., et al. (2003) A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J. Immunol. Methods 277, 141–155.

    Article  PubMed  CAS  Google Scholar 

  5. Pu, H., Cashion, L. M., Kretschmer, P. J., and Liu, Z. (1998) Rapid establishment of high-producing cell lines using dicistronic vectors with glutamine synthetase as the selection marker. Mol. Biotechnol. 10, 17–25.

    PubMed  CAS  Google Scholar 

  6. Ross, P. L., Huang, Y. N., Marchese, J. N., et al. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteomics 3, 1154–1169.

    Article  PubMed  CAS  Google Scholar 

  7. Wlaschin, K. F., Nissom, P. M., Gatti, M. L., et al. (2005) EST sequencing for gene discovery in Chinese hamster ovary cells. Biotechnol. Bioeng. 91, 592–606.

    Article  PubMed  CAS  Google Scholar 

  8. Brazma, A., Hingamp, P., Quackenbush, J., et al. (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29, 365–371.

    Article  PubMed  CAS  Google Scholar 

  9. Yang, Y. H., Dudoit, S., Luu, P., et al. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30, e15.

    Article  PubMed  Google Scholar 

  10. Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408.

    Article  PubMed  CAS  Google Scholar 

  11. Meng, Y. G., Liang, J., Wong, W. L., and Chisholm, V. (2000) Green fluorescent protein as a second selectable marker for selection of high producing clones from transfected CHO cells. Gene 242, 201–207.

    Article  PubMed  CAS  Google Scholar 

  12. Unwin, R. D., Smith, D. L., Blinco, D., et al. (2006) Quantitative proteomics reveals post-translational control as a regulatory factor in primary hematopoietic stem cells. Blood 107, 4687–4694.

    Article  PubMed  CAS  Google Scholar 

  13. Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Mol. Cell Biol. 19, 1720–1730.

    PubMed  CAS  Google Scholar 

  14. Anderson, L. and Seilhamer, J., (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18, 533–537.

    Article  PubMed  CAS  Google Scholar 

  15. Grandi, P., Rybin, V., Bassler, J., et al. (2002) 90S preribosomes include the 35S pre-rRNA, the U3 snoRNP and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol. Cell. 10, 105–115.

    Article  PubMed  CAS  Google Scholar 

  16. Milkereit, P., Kuhn, H., Gas, N., and Tschochner, H. (2003) The pre-ribosomal network. Nucleic Acids Res. 31, 799–804.

    Article  PubMed  CAS  Google Scholar 

  17. Fernandez-Pol, J. A., Klos, D. J., and Hamilton, P. D. (1993) A growth factor-inducible gene encodes a novel nuclear protein with zinc finger structure. J. Biol. Chem. 268, 21,198–21,204.

    CAS  Google Scholar 

  18. Suzuki, K., Olvera, J., and Wool, I. G. (1991) Primary structure of rat ribosomal protein S2. A ribosomal protein with arginine-glycine tandem repeats and RGGF motifs that are associated with nucleolar localization and binding to ribonucleic acids. J. Biol. Chem. 266, 20,007–20,010.

    CAS  Google Scholar 

  19. Brogna, S., Sato, T. A., and Rosbash, M. (2002) Ribosome components are associated with sites of transcription. Mol. Cell 10, 93–104.

    Article  CAS  Google Scholar 

  20. Oliver, E. R., Saunders, L., Tarle, S. A., and Glaser, T. (2004) Ribosomal protein L24 defect in belly spot and tail (Bst), a mouse minute. Development 131, 3907–3920.

    Article  PubMed  CAS  Google Scholar 

  21. Tornow, J. and Santangelo, G. M. (1994) Saccharomyces cerevisiae ribosomal protein L37 is encoded by duplicate genes that are differentially expressed. Curr. Genet. 25, 480–487.

    Article  PubMed  CAS  Google Scholar 

  22. Shin, B. K., Wang, H., Yim, A. M., et al. (2003) Global profiling of the cell surface proteome of cancer cells uncovers and abundance of proteins with chaper-one function. J. Biol. Chem. 278, 7607–7616.

    Article  PubMed  CAS  Google Scholar 

  23. Shuda, M., Kondoh, N., Imazeki, N., et al. (2003) Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J. Hepatol. 38, 605–614.

    Article  PubMed  CAS  Google Scholar 

  24. Ito, Y. and Bustin, M. (2002) Immunohistochemical localization of the nucleosome-binding protein HMGN3 in mouse brain. J. Histochem. Cytochem. 50, 1273–1275.

    PubMed  CAS  Google Scholar 

  25. Travers, A. A. (2003) Priming the nucleosome: a role for HMGB proteins? EMBO Rep. 4, 131–136.

    Article  PubMed  CAS  Google Scholar 

  26. Bi, J. X., Shuttleworth, J., and Al-Rubeai, M. (2004) Uncoupling of cell growth and proliferation results in enhancement of productivity in p21CIP1-arrested CHO cells. Biotechnol. Bioeng. 85, 741–749.

    Article  PubMed  CAS  Google Scholar 

  27. Meents, H., Enenkel, B., Eppenberger, H. M., Werner, R. G., and Fussenegger, M. (2002) Impact of coexpression and coamplification of sICAM and antiapoptosis determinants bcl-2/bcl-x(L) on productivity, cell survival, and mitochondria number in CHO-DG44 grown in suspension and serum-free media. Biotechnol. Bioeng. 80, 706–716.

    Article  PubMed  CAS  Google Scholar 

  28. Ingham, R. J., Gish, G., and Pawson, T. (2004) The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene 23, 1972–1984.

    Article  PubMed  CAS  Google Scholar 

  29. Pham, N. and Rotin, D. (2001) Nedd4 regulates ubiquitination and stability of the guanine-nucleotide exchange factor CNrasGEF. J. Biol. Chem. 276, 46,995–47,003.

    CAS  Google Scholar 

  30. Vecchione, A., Marchese, A., Henry, P., Rotin, D., and Morrione, A. (2003) The Grb10/Nedd4 complex regulates ligand-induced ubiquitination and stability of the insulin-like growth factor I receptor. Mol. Cell. Biol. 23, 3363–3372.

    Article  PubMed  CAS  Google Scholar 

  31. Stapulionis, R., Kolli, S., and Deutscher, M. P. (1997) Efficient mammalian protein synthesis requires an intact F-actin system. J. Biol. Chem. 272, 24,980–24,986.

    Article  CAS  Google Scholar 

  32. Rai, M. and Padh, H. (2001) Expression systems for production of heterologous proteins. Curr. Sci. 80, 1121–1128.

    CAS  Google Scholar 

  33. Condeelis, J. (1995) Elongation factor 1α, translation and the cytoskeleton. Trends Biochem Sci. 20, 169–170.

    Article  PubMed  CAS  Google Scholar 

  34. Conrads, K. A., Yi, M., Simpson, K. A., et al. (2005) A combined proteome and microarray investigation of inorganic phosphate-induced pre-osteoblast cells. Mol. Cell. Proteomics 4, 1284–1296.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Morin Nissom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nissom, P.M., Sanny, A., Kok, Y.J. et al. Transcriptome and proteome profiling to understanding the biology of high productivity CHO cells. Mol Biotechnol 34, 125–140 (2006). https://doi.org/10.1385/MB:34:2:125

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:34:2:125

Index Entries

Navigation