Skip to main content
Log in

Analysis of the quality of contact pin fabricated oligonucleotide microarrays

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

As the quality of microarrays is critical to successful experiments for data consistency and validity, a reliable and convenient quality control method is needed. We describe a systematic quality control method for large-scale genome oligonucleotide arrays. This method is comprised of three steps to assess the quality of printed arrays. The first step involves assessment of the autofluorescence property of DNA. This step is convenient, quick to perform, and allowed reuse of every array. The second step involves hybridization of arrays with Cy3-labeled 9-meroligonucleotide target to asess the quality and stability of oligonucleotides. Because this step consumed arrays, one or two arrays from each batch were used to complement the quality control data from autofluorescence. The third step involves hybridization of arrays from every batch with transcripts derived from two cell lines to asess data consistency. These hybridizations were able to distinguish two closely related tissue samples by identifying a cluster of 20 genes that were differently expressed in U87MG and T98G glioblastoma cell lines. In addition, we standardized two parameters that significantly enhanced the quality of arrays. We found that longer pin contact time and crosslinking oligonucleotides at 400 mJ/cm2 were optimal for the highest hybridization intensity. Taken together, these results in indicate that the quality of spotted oligonucleotide arrays should be assessed by at least two methods, autofluorescence and 9-mer hybridization before arrays are used for hybridization experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hegde, P., Qi, R., Gaspard, R., et al. (2001) Identification of tumor markers in models of human colorectal cancer using a 19,200-element complementary DNA microarray. Cancer Res., 61, 7792–7797.

    PubMed  CAS  Google Scholar 

  2. Bekal, S., Brousseau, R., Masson, L., Prefontaine, G., Fairbrother, J., and Harel, J. (2003) Rapid identification of Escherichia coli pathotypes by virulence gene detection with DNA microarrays. J. Clin. Microbiol. 41, 2113–2125.

    Article  PubMed  CAS  Google Scholar 

  3. Bhattacharya, B., Miura, T., Brandenberger, R., et al. (2004) Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 103, 2956–2964.

    Article  PubMed  CAS  Google Scholar 

  4. Bloom, G., Yang, I. V., Boulware, D., Kwong, K. Y., Coppola, D., Eschrich, S., Quackenbush, J., Yeatman, T. J. (2004) Multi-platform, multi-site, microarray-based human tumor classification. Am. J. Pathol. 164, 9–16.

    PubMed  CAS  Google Scholar 

  5. McGall, G., Labadie, J., Brock, P., Wallraff, G., Nguyen, T., and Hinsberg, W. (1996) Light-directed systhesis of high-density oligonucleotide arrays using semiconductor photoresists. Proc. Natl. Acad. Sci. USA 93, 13,555–13,560.

    Article  CAS  Google Scholar 

  6. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.

    Article  PubMed  CAS  Google Scholar 

  7. Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P., and Trent, J. M. (1999) Expression profiling using cDNA microarrays. Nat. Genet. 21, 10–14.

    Article  PubMed  CAS  Google Scholar 

  8. Liu, Y. and Rauch, C. B. (2003) DNA probe attachment on plastic surfaces and microfluidic hybridization array channel devices with sample oscillation. Anal. Biochem. 317, 76–84.

    Article  PubMed  CAS  Google Scholar 

  9. Okamoto, T., Suzuki, T., and Yamamoto, N. (2000) Microarray fabrication with covalent attachement of DNA using bubble jet technology. Nat. Biotechnol. 18, 438–441.

    Article  PubMed  CAS  Google Scholar 

  10. Hughes, T. R., Mao, M., Jones, A. R., et al. (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 19, 342–347.

    Article  PubMed  CAS  Google Scholar 

  11. Reese, M. O., van Dam, R. M., Scherer, A., and Quake, S. R. (2003) Microfabricated fountain pens for high-density DNA arrays. Genome Res. 13, 2348–2352.

    Article  PubMed  CAS  Google Scholar 

  12. Battaglia, C., Salani, G., Consolandi, C., Bernardi, L. R., and De Bellis, G. (2000) Analysis of DNA microarrays by non-destructive fluorescent staining using SYBR Green II. Biotechniques 29, 78–81.

    PubMed  CAS  Google Scholar 

  13. Shearstone, J. R., Allaire, N. E., Getman, M. E., and Perrin, S. (2002) Nondestructive quality control for microarray production. Biotechniques 32, 1051–1057.

    PubMed  CAS  Google Scholar 

  14. Experimental protocol (http://cmgm.stanford.edu/pbrown/protocols/index.html)

  15. NCI microarray manual (http://nciarray.nci.nih.gov/reference/nciarrayspacket01-04A.pdf)

  16. Microarray database (mAdb) (http://nciarray.nci.nih.gov)

  17. Wang, H. Y., Malek, R. L., Kwitek, A. E., et al. (2003) Assessing, unmodified 70-mer oligonucleotide probe performance on glass-slide microarrays. Genome Biol. 4, R5.

    Article  PubMed  Google Scholar 

  18. Hessner, M. J., Meyer, L., Tackes, J., Muheisen, S., Wang, X. (2004) Immobilized probe and glass surface chemistry as variables in microarray fabrication. BMC Genomics 1, 53–60.

    Article  Google Scholar 

  19. Hessner, M. J., Wang, X., Hulse, K., et al. (2003) Three color cDNA microarrays: quantitative assessment through the use of fluorescein-labeled probes. Nucl. Acids Res. 31, e14.

    Article  PubMed  Google Scholar 

  20. Joshi, B. H., Plautz, G. E., and Puri, R. K. (2000) Interleukin-13 receptor alpha chain: a novel tumor-associated transmembrane protein in primary explants of human malignant gliomas. Cancer Res. 60, 1168–1172.

    PubMed  CAS  Google Scholar 

  21. User Manual (http://www.Genomicsolution.com/files/genomics)

  22. Wang, X., Ghosh, S., and Guo, S. W. (2001) Quantitative quality control in microarray image processing and data acquisition. Nucleic Acids Res. 29, E75–5.

    Article  PubMed  CAS  Google Scholar 

  23. Hautaniemi, S., Edgren, H., Vesanen, P., et al. (2003) A novel strategy for microarray quality control using Bayesian networks. Bioinformatics 19, 2031–2038.

    Article  PubMed  CAS  Google Scholar 

  24. Gollub, J., Ball, C. A., Binkley, G., et al. (2003) The Stanford Microarray Database: data access and quality assessment tools. Nucleic Acids Res. 31, 94–96.

    Article  PubMed  CAS  Google Scholar 

  25. Burgoon, L. D., Eckel-Passow, J. E., Gennings, C., et al. (2005) Protocols for the assurance of microarray data quality and process control. Nucleic Acids Res. 33, e172.

    Article  PubMed  CAS  Google Scholar 

  26. Kim, K., Page, G. P., Beasley, T. M., Barnes, S., Scheirer, K. E., and Allison, D. B. (2006) A proposed metric for assessing the measurement quality of individual microarrays. BMC Bioinformatics 7, 35.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj K. Puri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, A.X., Mejido, J., Bhattacharya, B. et al. Analysis of the quality of contact pin fabricated oligonucleotide microarrays. Mol Biotechnol 34, 303–315 (2006). https://doi.org/10.1385/MB:34:3:303

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:34:3:303

Index Entries

Navigation