Skip to main content
Log in

The growing role of mTOR in neuronal development and plasticity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuronal development and synaptic plasticity are highly regulated processes in which protein kinases play a key role. Recently, increasing attention has been paid to a serine/threonine protein kinase called mammalian target of rapamycin (mTOR) that has well-known functions in cell proliferation and growth. In neuronal cells, mTOR is implicated in multiple processes, including transcription, ubiquitin-dependent proteolysis, and microtubule and actin dynamics, all of which are crucial for neuronal development and long-term modification of synaptic strength. The aim of this article is to present our current understanding of mTOR functions in axon guidance, dendritic tree development, formation of dendritic spines, and in several forms of long-term synaptic plasticity. We also aim to present explanation for the mTOR effects on neurons at the level of mTOR-regulated genes and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, G. Y., Deisseroth, K., and Tsien, R. W. (2001) Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology. Nat. Neurosci. 4, 151–158.

    PubMed  CAS  Google Scholar 

  2. Adams, J. P., and Sweatt, J. D. (2002) Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu. Rev. Pharmacol. Toxicol. 42, 135–163.

    PubMed  CAS  Google Scholar 

  3. Atwal, J. K., Massie, B., Miller, F. D., and Kaplan, D. R. (2000) The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron 27, 265–277.

    PubMed  CAS  Google Scholar 

  4. Sanna, P. P., Cammalleri, M., Berton, F., et al. (2002) Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J. Neurosci. 22, 3359–3365.

    PubMed  CAS  Google Scholar 

  5. Jaworski, J., Spangler, S., Seeburg, D. P., Hoogenraad, C. C., and Sheng, M. (2005) Control of dendritic arborization by the phosphoinositide-3′-kinase-Akt-mammalian target of rapamycin pathway. J. Neurosci. 25, 11,300–11,312.

    CAS  Google Scholar 

  6. Kumar, V., Zhang, M. X., Swank, M. W., Kunz, J., and Wu, G. Y. (2005) Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. J. Neurosci. 25, 11,288–11,299.

    CAS  Google Scholar 

  7. Fink, C. C., Bayer, K. U., Myers, J. W., Ferrell, J. E., Jr., Schulman, H., and Meyer, T. (2003) Selective regulation of neurite extension and synapse formation by the beta but not the alpha isoform of CaMKII. Neuron 39, 283–297.

    PubMed  CAS  Google Scholar 

  8. Jourdain, P., Fukunaga, K., and Muller, D. (2003) Calcium/calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation. J. Neurosci. 23, 10,645–10,649.

    CAS  Google Scholar 

  9. Colbran, R. J., and Brown, A. M. (2004) Calcium/calmodulin-dependent protein kinase II and synaptic plasticity. Curr. Opin. Neurobiol. 14, 318–327.

    PubMed  CAS  Google Scholar 

  10. Redmond, L., Kashani, A. H., and Ghosh, A. (2002) Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 34, 999–1010.

    PubMed  CAS  Google Scholar 

  11. Wu, G. Y., and Cline, H. T. (1998) Stabilization of dendritic arbor structure in vivo by CaMKII. Science 279, 222–226.

    PubMed  CAS  Google Scholar 

  12. Kwon, C. H., Zhu, X., Zhang, J., and Baker, S. J. (2003) mTor is required for hypertrophy of Pten-deficient neuronal soma in vivo. Proc. Natl. Acad. Sci. USA 100, 12,923–12,928.

    CAS  Google Scholar 

  13. Burnett, P. E., Barrow, R. K., Cohen, N. A., Snyder, S. H., and Sabatini, D. M. (1998) RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc. Natl. Acad. Sci. USA 95, 1432–1437.

    PubMed  CAS  Google Scholar 

  14. Xie, M. W., Jin, F., Hwang, H., et al. (2005) Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method. Proc. Natl. Acad. Sci. USA 102, 7215–7220.

    PubMed  CAS  Google Scholar 

  15. Chan, T. F., Carvalho, J., Riles, L., and Zheng, X. F. (2000) A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR). Proc. Natl. Acad. Sci. USA 97, 13,227–13,232.

    CAS  Google Scholar 

  16. Guertin, D. A., Guntur, K. V., Bell, G. W., Thoreen, C. C., and Sabatini, D. M. (2006) Functional genomics identifies TOR-regulated genes that control growth and division. Curr. Biol. 16, 958–970.

    PubMed  CAS  Google Scholar 

  17. Jacinto, E., and Hall, M. N. (2003) Tor signalling in bugs, brain and brawn. Nat. Rev. Mol. Cell Biol. 4, 117–126.

    PubMed  CAS  Google Scholar 

  18. Sarbassov dos, D., Ali, S. M., and Sabatini, D. M. (2005) Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 17, 596–603.

    PubMed  CAS  Google Scholar 

  19. Schmelzle, T., and Hall, M. N. (2000). TOR, a central controller of cell growth. Cell 103, 253–262.

    PubMed  CAS  Google Scholar 

  20. Harris, T. E., and Lawrence, J. C., Jr. (2003) TOR signaling. Sci. STKE 2003, re15.

    PubMed  Google Scholar 

  21. Lenz, G., and Avruch, J. (2005) Glutamatergic regulation of the p70S6 kinase in primary mouse neurons. J. Biol. Chem. 280, 38121–38124.

    PubMed  CAS  Google Scholar 

  22. Cammalleri, M., Lutjens, R., Berton, F., et al. (2003) Time-restricted role for dendritic activation of the mTOR-p70S6K pathway in the induction of late-phase long-term potentiation in the CA1. Proc. Natl. Acad. Sci. USA 100, 14,368–14,373.

    CAS  Google Scholar 

  23. Hou, L., and Klann, E. (2004) Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J. Neurosci. 24, 6352–6361.

    PubMed  CAS  Google Scholar 

  24. Garami, A., Zwartkruis, F. J., Nobukuni, T., et al. (2003) Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell 11, 1457–1466.

    PubMed  CAS  Google Scholar 

  25. Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C., and Blenis, J. (2003) Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13, 1259–1268.

    PubMed  CAS  Google Scholar 

  26. Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J., and Cantley, L. C. (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell 10, 151–162.

    PubMed  CAS  Google Scholar 

  27. Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, A., and Chen, J. (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294, 1942–1945.

    PubMed  CAS  Google Scholar 

  28. Tee, A. R., Anjum, R., and Blenis, J. (2003) Inactivation of the tuberous sclerosis complex-1 and-2 gene products occurs by phosphoinositide 3-kinase/Akt-dependent and-independent phosphorylation of tuberin. J. Biol. Chem. 278, 37,288–37,296.

    CAS  Google Scholar 

  29. Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P., and Pandolfi, P. P. (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179–193.

    PubMed  CAS  Google Scholar 

  30. Kimura, N., Tokunaga, C., Dalal, S., et al. (2003) A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells 8, 65–79.

    PubMed  CAS  Google Scholar 

  31. Sarbassov, D. D., Ali, S. M., Kim, D. H., et al. (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol 14, 1296–1302.

    PubMed  CAS  Google Scholar 

  32. Hara, K., Maruki, Y., Long, X., et al. (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 100, 177–189.

    Google Scholar 

  33. Kim, D. H., sarbassov, D. D., Ali, S. et al. (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175.

    PubMed  CAS  Google Scholar 

  34. Hara, K., Yonezawa, K., Kozlowski, M. T., et al. (1997) Regulation of eIF-4E BP1 phosphorylation by mTOR. J. Biol. Chem. 272, 26,457–26,463.

    CAS  Google Scholar 

  35. Jefferies, H. B., Fumagalli, S., Dennis, P. B., Reinhard, C., Pearson, R. B., and Thomas, G. (1997) Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J. 16, 3693–3704.

    PubMed  CAS  Google Scholar 

  36. Meyuhas, O. (2000) Synthesis of the translational apparatus is regulated at the translational level. Eur. J. Biochem. 267, 6321–6330.

    PubMed  CAS  Google Scholar 

  37. Beretta, L., Gingras, A. C., Svitkin, Y. V., Hall, M. N., and Sonenberg, N. (1996) Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J. 15, 658–664.

    PubMed  CAS  Google Scholar 

  38. Peterson, R. T., Desai, B. N., Hardwick, J. S., and Schreiber, S. L. (1999) Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. Proc. Natl. Acad. Sci. USA 96, 4438–4442.

    PubMed  CAS  Google Scholar 

  39. Choi, J. H., Bertram, P. G., Drenan, R., Carvalho, J., Zhou, H. H., and Zheng, X. F. (2002) The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170 kinase. EMBO Rep. 3, 988–994.

    PubMed  CAS  Google Scholar 

  40. Redpath, N. T., Foulstone, E. J., and Proud, C. G. (1996) Regulation of translation elongation factor-2 by insulin via a rapamycin-sensitive signalling pathway. EMBO J. 15, 2291–2297.

    PubMed  CAS  Google Scholar 

  41. Azpiazu, I., Saltiel, A. R., DePaoli-Roach, A. A., and Lawrence, J. C. (1996) Regulation of both glycogen synthase and PHAS-I by insulin in rat skeletal muscle involves mitogen-activated protein kinase-independent and rapamycin-sensitive pathways. J. Biol. Chem. 271, 5033–5039.

    PubMed  CAS  Google Scholar 

  42. Shepherd, P. R., Nave, B. T., and Siddle, K. (1995) Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3T3-L1 adipocytes: evidence for the involvement of phosphoinositide 3-kinase and p70 ribosomal protein-S6 kinase. Biochem. J. 305 (Pt 1), 25–28.

    PubMed  CAS  Google Scholar 

  43. Hudson, C. C., Liu, M., Chiang, G. G., et al. (2002) Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol. Cell Biol. 22, 7004–7014.

    PubMed  CAS  Google Scholar 

  44. Jacinto, E., Loewith, R., Schmidt, A., et al. (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6, 1122–1128.

    PubMed  CAS  Google Scholar 

  45. Sarbassov dos, D., Ali, S. M., Sengupta, S., et al. (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22, 159–168.

    PubMed  CAS  Google Scholar 

  46. Bassell, G. J., Zhang, H., Byrd, A. L., et al. (1998) Sorting of beta-actin mRNA and protein to neurites and growth cones in culture. J. Neurosci. 18, 251–265.

    PubMed  CAS  Google Scholar 

  47. Martin, K. C. (2004) Local protein synthesis during axon guidance and synaptic plasticity. Curr. Opin. Neurobiol. 14, 305–310.

    PubMed  CAS  Google Scholar 

  48. Piper, M., Anderson, R., Dwivedy, A., et al. (2006) Signaling mechanisms underlying Slit2-induced collapse of Xenopus retinal growth cones. Neuron 49, 215–228.

    PubMed  CAS  Google Scholar 

  49. Piper, M., and Holt, C. (2004) RNA translation in axons. Annu. Rev. Cell Dev. Biol. 20, 505–523.

    PubMed  CAS  Google Scholar 

  50. Campbell, D. S., and Holt, C. E. (2001) Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026.

    PubMed  CAS  Google Scholar 

  51. Abe, H., Obinata, T., Minamide, L. S., and Bamburg, J. R. (1996) Xenopus laevis actin-depolymerizing factor/cofilin: a phosphorylation-regulated protein essential for development. J. Cell Biol. 132, 871–885.

    PubMed  CAS  Google Scholar 

  52. Willis, D. E., and Twiss, J. L. (2006) The evolving roles of axonally synthesized proteins in regeneration. Curr. Opin. Neurobiol. 16, 111–118.

    PubMed  CAS  Google Scholar 

  53. Verma, P., Chierzi, S., Codd, A. M., et al. (2005) Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J. Neurosci. 25, 331–342.

    PubMed  CAS  Google Scholar 

  54. Selzer, M. E. (2003) Promotion of axonal regeneration in the injured CNS. Lancet Neurol. 2, 157–166.

    PubMed  CAS  Google Scholar 

  55. Chuckowree, J. A., Dickson, T. C., and Vickers, J. C. (2004) Intrinsic regenerative ability of mature CNS neurons. Neuroscientist 10, 280–285.

    PubMed  Google Scholar 

  56. Wessells, N. K., Johnson, S. R., and Nuttall, R. P. (1978) Axon initiation and growth cone regeneration in cultured motor neurons. Exp. Cell Res. 117, 335–345.

    PubMed  CAS  Google Scholar 

  57. Blackmore, M., and Letourneau, P. C. (2006) Changes within maturing neurons limit axonal regeneration in the developing spinal cord. J. Neurobiol. 66, 348–360.

    PubMed  CAS  Google Scholar 

  58. Sahly, I., Khoutorsky, A., Erez, H., Prager-Khoutorsky, M., and Spira, M. E. (2006) Online confocal imaging of the events leading to structural dedifferentiation of an axonal segment into a growth cone after axotomy. J. Comp. Neurol. 494, 705–720.

    PubMed  Google Scholar 

  59. Jan, Y. N., and Jan, L. Y. (2003) The control of dendrite development. Neuron 40, 229–242.

    PubMed  CAS  Google Scholar 

  60. McAllister, A. K. (2000) Cellular and molecular mechanisms of dendrite growth. Cereb. Cortex 10, 963–973.

    PubMed  CAS  Google Scholar 

  61. Wong, R. O., and Ghosh, A. (2002) Activity-dependent regulation of dendritic growth and patterning. Nat. Rev. Neurosci. 3, 803–812.

    PubMed  CAS  Google Scholar 

  62. Miller, F. D., and Kaplan, D. R. (2003) Signaling mechanisms underlying dendrite formation. Curr. Opin. Neurobiol. 13, 391–398.

    PubMed  CAS  Google Scholar 

  63. Wirth, M. J., Brun, A., Grabert, J., Patz, S., and Wahle, P. (2003) Accelerated dendritic development of rat cortical pyramidal cells and interneurons after biolistic transfection with BDNF and NT4/5. Development 130, 5827–5838.

    PubMed  CAS  Google Scholar 

  64. Whitford, K. L., Marillat, V., Stein, E., Goodman, C. S., Tessier-Lavigne, M., Chedotal, A., and Ghosh, A. (2002) Regulation of cortical dendrite development by Slit-Robo interactions. Neuron 33, 47–61.

    PubMed  CAS  Google Scholar 

  65. Polleux, F., Morrow, T., and Ghosh, A. (2000) Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404, 567–573.

    PubMed  CAS  Google Scholar 

  66. Horch, H. W., and Katz, L. C. (2002) BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat. Neurosci. 5, 1177–1184.

    PubMed  CAS  Google Scholar 

  67. Yu, X., and Malenka, R. C. (2003) Beta-catenin is critical for dendritic morphogenesis. Nat. Neurosci. 6, 1169–1177.

    PubMed  CAS  Google Scholar 

  68. Redmond, L., Oh, S. R., Hicks, C., Weinmaster, G., and Ghosh, A. (2000) Nuclear Notch1 signaling and the regulation of dendritic development. Nat. Neurosci. 3, 30–40.

    PubMed  CAS  Google Scholar 

  69. Lohmann, C., Myhr, K. L., and Wong, R. O. (2002) Transmitter-evoked local calcium release stabilizes developing dendrites. Nature 418, 177–181.

    PubMed  CAS  Google Scholar 

  70. Bjorkblom, B., Ostman, N., Hongisto, V., et al. (2005) Constitutively active cytoplasmic c-Jun N-terminal kinase 1 is a dominant regulator of dendritic architecture: role of microtubule-associated protein 2 as an effector. J. Neurosci. 25, 6350–6361.

    PubMed  Google Scholar 

  71. Wayman, G. A., Impey, S., Marks, D., et al. (2006) Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 50, 897–909.

    PubMed  CAS  Google Scholar 

  72. Nakayama, A. Y., Harms, M. B., and Luo, L. (2000) Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci. 20, 5329–5338.

    PubMed  CAS  Google Scholar 

  73. Hayashi, K., Ohshima, T., and Mikoshiba, K. (2002) Pak1 is involved in dendrite initiation as a downstream effector of Rac1 in cortical neurons. Mol. Cell Neurosci. 20, 579–594.

    PubMed  CAS  Google Scholar 

  74. Sholl, D. A. (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J. Anat. 87, 387–406.

    PubMed  CAS  Google Scholar 

  75. Kwon, C. H., Luikart, B. W., Powell, C. M., et al. (2006) Pten regulates neuronal arborization and social interaction in mice. Neuron 50, 377–388.

    PubMed  CAS  Google Scholar 

  76. Dijkhuizen, P. A., and Ghosh, A. (2005) BDNF regulates primary dendrite formation in cortical neurons via the PI3-kinase and MAP kinase signaling pathways. J. Neurobiol. 62, 278–288.

    PubMed  CAS  Google Scholar 

  77. Hering, H., and Sheng, M. (2001) Dendritic spines: structure, dynamics and regulation. Nat. Rev. Neurosci. 2, 880–888.

    PubMed  CAS  Google Scholar 

  78. Yuste, R., and Bonhoeffer, T. (2004) Genesis of dendritic spines: insights from ultrastructrual and imaging studies. Nat. Rev. Neurosci. 5, 24–34.

    PubMed  CAS  Google Scholar 

  79. Tada, T., and Sheng, M. (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr. Opin. Neurobiol. 16, 95–101.

    PubMed  CAS  Google Scholar 

  80. Casadio, A., Martin, K. C., Giustetto, M., et al. (1999) A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell 99, 221–237.

    PubMed  CAS  Google Scholar 

  81. Tavazoie, S. F., Alvarez, V. A., Ridenour, D. A., Kwiatkowski, D. J., and Sabatini, B. L. (2005) Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat. Neurosci. 8, 1727–1734.

    PubMed  CAS  Google Scholar 

  82. Kelleher, R. J., 3rd, Govindarajan, A., and Tonegawa, S. (2004) Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 44, 59–73.

    PubMed  CAS  Google Scholar 

  83. Squire, L. R., and Davis, H. P. (1981) The pharmacology of memory: a neurobiological perspective. Annu. Rev. Pharmacol. Toxicol. 21, 323–356.

    PubMed  CAS  Google Scholar 

  84. Beaumont, V., Zhong, N., Fletcher, R., Froemke, R. C., and Zucker, R. S. (2001) Phosphorylation and local presynaptic protein synthesis in calcium- and calcineurin-dependent induction of crayfish long-term facilitation. Neuron 32, 489–501

    PubMed  CAS  Google Scholar 

  85. Tang, S. J., Reis, G., Kang, H., Gingras, A. C., Sonenberg, N., and Schuman, E. M. (2002) A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc. natl. Acad. Sci. USA 99, 467–472.

    PubMed  CAS  Google Scholar 

  86. Vickers, C. A., Dickson, K. S., and Wyllie, D. J. (2005) Induction and maintenance of latephase long-term potentiation in isolated dendrites of rat hippocampal CA1 pyramidal neurones. J. Physiol. 568, 803–813.

    PubMed  CAS  Google Scholar 

  87. Cracco, J. B., Serrano, P., Moskowitz, S. I., Bergold, P. J., and Sacktor, T. C. (2005) Protein synthesis-dependent LTP in isolated dendrites of CA1 pyramidal cells. Hippocampus 15, 551–556.

    PubMed  CAS  Google Scholar 

  88. Wang, Y., Barbaro, M. F., and Baraban, S. C. (2006) A role for the mTOR pathway in surface expression of AMPA receptors. Neurosci. Lett. 401, 35–39.

    PubMed  CAS  Google Scholar 

  89. Job, C., and Eberwine, J. (2001) Identification of sites for exponential translation in living dendrites. Proc. Natl. Acad. Sci. USA 98, 13037–13042.

    PubMed  CAS  Google Scholar 

  90. Huber, K. M., Roder, J. C., and Bear, M. F. (2001) Chemical induction of mGluR5- and protein synthesis-dependent long-term depression in hippocampal area CA1. J. Neurophysiol. 86, 321–325.

    PubMed  CAS  Google Scholar 

  91. Banko, J. L., Hou, L., Poulin, F., Sonenberg, N., and Klann, E. (2006) Regulation of eukaryotic initiation factor 4E by converging signaling pathways during metabotropic glutamate receptor-dependent long-term depression. J. Neurosci. 26, 2167–2173.

    PubMed  CAS  Google Scholar 

  92. Banko, J. L., Poulin, F., Hou, L., DeMaria, C. T., Sonenberg, N., and Klann, E. (2005) The translation repressor 4E-BP2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus. J. Neurosci. 25, 9581–9590.

    PubMed  CAS  Google Scholar 

  93. Zho, W. M., You, J. L., Huang, C. C., and Hsu, K. S. (2002) The group I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine induces a novel form of depotentiation in the CA1 region of the hippocampus. J. Neurosci. 22, 8838–8849.

    PubMed  CAS  Google Scholar 

  94. Malenka, R. C. (1994) Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78, 535–538.

    PubMed  CAS  Google Scholar 

  95. Tischmeyer, W., Schicknick, H., Kraus, M., et al. (2003) Rapamycin-sensitive signalling in longterm consolidation of auditory cortex-dependent memory. Eur. J. Neurosci. 18, 942–950.

    PubMed  Google Scholar 

  96. Lee, C. C., Huang, C. C., Wu, M. Y., and Hsu, K. S. (2005) Insulin stimulates postsynaptic density-95 protein translation via the phospho-inositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway. J. Biol. Chem. 280, 18543–18550.

    PubMed  CAS  Google Scholar 

  97. Takei, N., Inamura, N., Kawamura, M., et al. (2004) Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J. Neurosci. 24, 9760–9769.

    PubMed  CAS  Google Scholar 

  98. Kraut, R., Menon, K., and Zinn, K. (2001) A gain-of-function screen for genes controlling motor axon guidance and synaptogenesis in Drosophila. Curr. Biol. 11, 417–430.

    PubMed  CAS  Google Scholar 

  99. Schratt, G. M., Nigh, E. A., Chen, W. G., Hu, L., and Greenberg, M. E. (2004) BDNF regulates the translation of a select group of mRNAs by a mammalian target of rapamycin-phosphatidylinositol 3-kinase-dependent pathway during neuronal development. J. Neurosci. 24, 7366–7377.

    PubMed  CAS  Google Scholar 

  100. Schratt, G. M., Tuebing, F., Nigh, E. A., et al. (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439, 283–289.

    PubMed  CAS  Google Scholar 

  101. Yang, N., Higuchi, O., Ohashi, K., et al. (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393, 809–812.

    PubMed  CAS  Google Scholar 

  102. Meng, Y., Zhang, Y., Tregoubov, V., et al. (2002) Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35, 121–133.

    PubMed  CAS  Google Scholar 

  103. Zhou, Q., Homma, K. J., and Poo, M. M. (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44, 749–757.

    PubMed  CAS  Google Scholar 

  104. Guzowski, J. F., Lyford, G. L., Stevenson, G. D., et al. (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci. 20, 3993–4001.

    PubMed  CAS  Google Scholar 

  105. Vazquez, L. E., Chen, H. J., Sokolova, I., Knuesel, I., and Kennedy, M. B. (2004) SynGAP regulates spine formation. J. Neurosci. 24, 8862–8872.

    PubMed  CAS  Google Scholar 

  106. Akama, K. T., and McEwen, B. S. (2003) Estrogen stimulates postsynaptic density-95 rapid protein synthesis via the Akt/protein kinase B pathway. J. Neurosci. 23, 2333–2339.

    PubMed  CAS  Google Scholar 

  107. El-Husseini, A. E., Schnell, E., Chetkovich, D. M., Nicoll, R. A., and Bredt, D. S. (2000) PSD-95 involvement in maturation of excitatory synapses. Science 290, 1364–1368.

    PubMed  CAS  Google Scholar 

  108. Fagiolini, M., Katagiri, H., Miyamoto, H., et al. (2003) Separable features of visual cortical plasticity revealed by N-methyl-D-aspartate receptor 2A signaling. Proc. Natl. Acad. Sci. USA 100, 2854–2859.

    PubMed  CAS  Google Scholar 

  109. Yao, W. D., Gainetdinov, R. R., Arbuckle, M. I., et al. (2004) Identification of PSD-95 as a regulator of dopamine-mediated synaptic and behavioral plasticity. Neuron 41, 625–638.

    PubMed  CAS  Google Scholar 

  110. Onda, H., Crino, P. B., Zhang, H., et al. (2002) Tsc2 null murine neuroepithelial cells are a model for human tuber giant cells and show activation of an mTOR pathway. Mol. Cell Neurosci. 21, 561–574.

    PubMed  CAS  Google Scholar 

  111. Passafaro, M., Nakagawa, T., Sala, C., and Sheng, M. (2003) Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature 424, 677–681.

    PubMed  CAS  Google Scholar 

  112. Liu, L., Wong, T. P., Pozza, M. F., et al. (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304, 1021–1024.

    PubMed  CAS  Google Scholar 

  113. Kim, M. J., Dunah, A. W., Wang, Y. T., and Sheng, M. (2005) Differential roles of NR2A-and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron 46, 745–760.

    PubMed  CAS  Google Scholar 

  114. Dent, E. W., and Gertler, F. B. (2003) Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40, 209–227.

    PubMed  CAS  Google Scholar 

  115. Luo, L. (2002) Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu. Rev. Cell Dev. Biol. 18, 601–635.

    PubMed  CAS  Google Scholar 

  116. Matus, A. (2000) Actin-based plasticity in dendritic spines. Science 290, 754–758.

    PubMed  CAS  Google Scholar 

  117. Khurana, V., Lu, Y., Steinhilb, M. L., Oldham, S., Shulman, J. M., and Feany, M. B. (2006) TOR-mediated cell-cycle activation causes neurodegeneration in a Drosophila tauopathy model. Curr. Biol. 16, 230–241.

    PubMed  CAS  Google Scholar 

  118. Ravikumar, B., Vacher, C., Berger, Z., et al. (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595.

    PubMed  CAS  Google Scholar 

  119. Kwiatkowski, D. J. (2003) Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol. Ther. 2, 471–476.

    PubMed  CAS  Google Scholar 

  120. Jozwiak, J., and Jozwiak, S. (2005) Giant cells: contradiction to two-hit model of tuber formation? Cell Mol. Neurobiol. 25, 795–805.

    PubMed  Google Scholar 

  121. Kwiatkowski, D. J. (2003) Tuberous sclerosis: from tubers to mTOR. Ann. Hum. Genet. 67, 87–96.

    PubMed  CAS  Google Scholar 

  122. Inoki, K., Corradetti, M. N., and Guan, K. L. (2005) Dysregulation of the TSC-mTOR pathway in human disease. Nat. Genet. 37, 19–24.

    PubMed  CAS  Google Scholar 

  123. Johannessen, C. M., Reczek, E. E., James, M. F., Brems, H., Legius, E., and Cichowski, K. (2005) The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc. Natl. Acad. Sci. USA 102, 8573–8578.

    PubMed  CAS  Google Scholar 

  124. Antar L. N., and Bassell, G. J. (2003) Sunrise at the synapse: the FMRP mRNP shaping the synaptic interface. Neuron 37, 555–558.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgan Sheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaworski, J., Sheng, M. The growing role of mTOR in neuronal development and plasticity. Mol Neurobiol 34, 205–219 (2006). https://doi.org/10.1385/MN:34:3:205

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:34:3:205

Index Entries

Navigation