Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 5, 2005

Saccharomyces cerevisiae translational activator Cbs1p is associated with translationally active mitochondrial ribosomes

  • Udo Krause-Buchholz , Karina Schöbel , Susann Lauffer and Gerhard Rödel
From the journal Biological Chemistry

Abstract

In the yeast Saccharomyces cerevisiae, mitochondrial translation of most, if not all, mitochondrially encoded genes is regulated by an individual set of gene-specific activators. Translation of the COB mRNA encoding cytochrome b requires the function of two nuclearly encoded proteins, Cbs1p and Cbs2p. Genetic data revealed that the 5′-untranslated region of COB mRNA is the target of both proteins. Recently, we provided evidence for an interaction of Cbs2p with mitochondrial ribosomes. We demonstrate here by means of blue native gel electrophoresis, density gradient centrifugation and tandem affinity purification that a portion of Cbs1p is also associated with mitochondrial ribosomes. In addition, we demonstrate that the amount of ribosome-associated Cbs1p is elevated in the presence of chloramphenicol, which is known to stall ribosomes on mRNAs. In the presence of puromycin, which strips off the mRNA and nascent protein chains from ribosomes, Cbs1p is no longer associated with ribosomes. Our data indicate that the observed interaction is mediated by ribosome-bound mRNA, thus restricting the association to ribosomes actively translating cytochrome b.

:

Corresponding author

References

Black-Schaefer, C.L., McCourt, J.D., Poyton, R.O., and McKee, E.E. (1991). Mitochondrial gene expression in Saccharomyces cerevisiae. Proteolysis of nascent chains in isolated yeast mitochondria optimized for protein synthesis. Biochem. J.274, 199–205.Search in Google Scholar

Brown, N.G., Costanzo, M.C., and Fox, T.D. (1994). Interactions among three proteins that specifically activate translation of the mitochondrial COX3 mRNA in Saccharomyces cerevisiae. Mol. Cell. Biol.14, 1045–1453.Search in Google Scholar

Curgy, J.J. (1985). The mitoribosomes. Biol. Cell54, 1–38.10.1111/j.1768-322X.1985.tb00377.xSearch in Google Scholar

Daum, G., Böhni, P.C., and Schatz, G. (1982). Import of proteins into mitochondria. Cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J. Biol. Chem.257, 13028–13033.Search in Google Scholar

Drainas, D., Kalpaxis, D.L., and Coutsogeorgopoulos, C. (1987). Inhibition of ribosomal peptidyltransferase by chloramphenicol. Kinetic studies. Eur. J. Biochem.164, 53–58.10.1111/j.1432-1033.1987.tb10991.xSearch in Google Scholar

Faye, G. and Sor, F. (1977). Analysis of mitochondrial ribosomal proteins of Saccharomyces cerevisiae by two dimensional polyacrylamide gel electrophoresis. Mol. Gen. Genet.155, 27–34.10.1007/BF00268557Search in Google Scholar

Forsbach, V., Pillar, T., Gottenöf, T., and Rödel, G. (1989). Chromosomal localization and expression of CBS1, a translational activator of cytochrome b in yeast. Mol. Gen. Genet.218, 57–63.10.1007/BF00330565Search in Google Scholar

Freeman, K.B. (1970). Inhibition of mitochondrial and bacterial protein synthesis by chloramphenicol. Can. J. Biochem.48, 479–485.10.1139/o70-077Search in Google Scholar

Gan, X., Kitakawa, M., Yoshino, K., Oshiro, N., Yonezawa, K., and Isono, K. (2002). Tag-mediated isolation of yeast mitochondrial ribosome and mass spectrometric identification of its new components. Eur. J. Biochem.269, 5203–5214.10.1046/j.1432-1033.2002.03226.xSearch in Google Scholar

Green-Willms, N.S., Fox, T.D., and Costanzo, M.C. (1998). Functional interactions between yeast mitochondrial ribosomes and mRNA 5′-untranslated leaders. Mol. Cell. Biol.18, 1826–1834.10.1128/MCB.18.4.1826Search in Google Scholar

Grivell, L.A., Reijnders, L., and de Vries, H. (1971). Altered mitochondrial ribosomes in a cytoplasmic mutant of yeast. FEBS Lett.16, 159–163.10.1016/0014-5793(71)80121-7Search in Google Scholar

Haffter, P., McMullin, T.W., and Fox, T.D. (1990). A genetic link between an mRNA-specific translational activator and the translation system in yeast mitochondria. Genetics125, 495–503.10.1093/genetics/125.3.495Search in Google Scholar PubMed PubMed Central

Hell, K., Neupert, W., and Stuart, R.A. (2001). Oxa1p acts as a general membrane insertion machinery for proteins encoded by mitochondrial DNA. EMBO J.20, 1281–1288.10.1093/emboj/20.6.1281Search in Google Scholar PubMed PubMed Central

Hughes, T.R., Marton, M.J., Jones, A.R., Roberts, C.J., Stoughton, R., Armour, C.D., Bennett, H.A., Coffey, E., Dai, H., He, Y.D., et al. (2000). Functional discovery via a compendium of expression profiles. Cell102, 109–126.10.1016/S0092-8674(00)00015-5Search in Google Scholar

Jia, L., Dienhart, M., Schramp, M., McCauley, M., Hell, K., and Stuart, R.A. (2003). Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal region of Oxa1. EMBO J.22, 6438–6447.10.1093/emboj/cdg624Search in Google Scholar

Kaiser, C., Michaelis, S., and Mitchell, A. (1994). Methods in Yeast Genetics (Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press).Search in Google Scholar

Knop, M., Siegers, K., Pereira, G., Zachariae, W., Winsor, B., Nasmyth, K., and Schiebel, E. (1999). Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast15, 963–972.10.1002/(SICI)1097-0061(199907)15:10B<963::AID-YEA399>3.0.CO;2-WSearch in Google Scholar

Korber, P., Stahl, J.M., Nierhaus, K.H., and Bardwell, J.C. (2000). Hsp15: a ribosome-associated heat shock protein. EMBO J.19, 741–748.10.1093/emboj/19.4.741Search in Google Scholar

Krause, K., Lopes De Souza, R., Roberts, D.G., and Dieckmann, C.L. (2004). The mitochondrial message-specific mRNA protectors Cbp1 and Pet309 are associated in a high-molecular weight complex. Mol. Biol. Cell15, 2674–2683.10.1091/mbc.e04-02-0126Search in Google Scholar

Krause-Buchholz, U. (2000). Translationsaktivatoren der mitochondrialen Cytochrom b-Synthese in Saccharomyces cerevisiae: Membranassoziation, Mutagenese und Protein-Wechselwirkungen von Cbs1p. PhD thesis. Institute of Genetics, Technical University Dresden, Germany.Search in Google Scholar

Krause-Buchholz, U., Tzschoppe, K., Paret, C., Ostermann, K., and Rodel, G. (2000). Identification of functionally important regions of the Saccharomyces cerevisiae mitochondrial translational activator Cbs1p. Yeast16, 353–363.10.1002/1097-0061(20000315)16:4<353::AID-YEA539>3.0.CO;2-#Search in Google Scholar

Krause-Buchholz, U., Barth, K., Dombrowski, C., and Rödel, G. (2004). Saccharomyces cerevisiae translational activator Cbs2p is associated with mitochondrial ribosomes. Curr. Genet.46, 20–28.10.1007/s00294-004-0503-ySearch in Google Scholar

Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227, 680–685.10.1038/227680a0Search in Google Scholar

Lopez, P.J., Marchand, I., Yarchuk, O., and Dreyfus, M. (1998). Translation inhibitors stabilize Escherichia coli mRNAs independently of ribosome protection. Proc. Natl. Acad. Sci. USA95, 6067–6072.10.1073/pnas.95.11.6067Search in Google Scholar

Manthey, G.M. and McEwen, J.E. (1995). The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae. EMBO J.14, 4031–4043.10.1002/j.1460-2075.1995.tb00074.xSearch in Google Scholar

Manthey, G.M., Przybyla-Zawislak, B.D., and McEwen, J.E. (1998). The Saccharomyces cerevisiae Pet309 protein is embedded in the mitochondrial inner membrane. Eur. J. Biochem.255, 156–161.10.1046/j.1432-1327.1998.2550156.xSearch in Google Scholar

Marykwas, D.L. and Fox, T.D. (1989). Control of the Saccharomyces cerevisiae regulatory gene PET494: transcriptional repression by glucose and translational induction by oxygen. Mol. Cell. Biol.9, 484–491.Search in Google Scholar

McMullin, T.W., Haffter, P., and Fox, T.D. (1990). A novel small-subunit ribosomal protein of yeast mitochondria that interacts functionally with an mRNA-specific translational activator. Mol. Cell. Biol.10, 4590–4595.Search in Google Scholar

Michaelis, U., Körte, A., and Rödel, G. (1991). Association of cytochrome b translational activator proteins with the mitochondrial membrane: implications for cytochrome b expression in yeast. Mol. Gen. Genet.230, 177–185.10.1007/BF00290666Search in Google Scholar

Mittelmeier, T.M. and Dieckmann, C.L. (1995). In vivo analysis of sequences required for translation of cytochrome b transcripts in yeast mitochondria. Mol. Cell. Biol.15, 780–789.10.1128/MCB.15.2.780Search in Google Scholar

Naithani, S., Saracco, S.A., Butler, C.A., and Fox, T.D. (2003). Interactions among COX1, COX2, and COX3 mRNA-specific translational activator proteins on the inner surface of the mitochondrial inner membrane of Saccharomyces cerevisiae. Mol. Biol. Cell14, 324–333.10.1091/mbc.e02-08-0490Search in Google Scholar

Perez-Martinez, X., Broadley, S.A., and Fox, T.D. (2003). Mss51p promotes mitochondrial Cox1p synthesis and interacts with newly synthesized Cox1p. EMBO J.22, 5951–5961.10.1093/emboj/cdg566Search in Google Scholar

Polacek, N., Gomez, M.J., Ito, K., Xiong, L., Nakamura, Y., and Mankin, A. (2003). The critical role of the universally conserved A2602 of 23S ribosomal RNA in the release of the nascent peptide during translation termination. Mol. Cell11, 103–112.10.1016/S1097-2765(02)00825-0Search in Google Scholar

Redd, M.J., Arnaud, M.B., and Johnson, A.D. (1997). A complex composed of tup1 and ssn6 represses transcription in vitro. J. Biol. Chem.272, 11193–11197.10.1074/jbc.272.17.11193Search in Google Scholar PubMed

Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999). A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol.17, 1030–1032.10.1038/13732Search in Google Scholar PubMed

Rodeheffer, M.S., Boone, B.E., Bryan, A.C., and Shadel, G.S. (2001). Nam1p, a protein involved in RNA processing and translation, is coupled to transcription through an interaction with yeast mitochondrial RNA polymerase. J. Biol. Chem.276, 8616–8622.10.1074/jbc.M009901200Search in Google Scholar PubMed PubMed Central

Rödel, G. (1986). Two yeast nuclear genes, CBS1 and CBS2, are required for translation of mitochondrial transcripts bearing the 5′-untranslated COB leader. Curr. Genet.11, 41–45.10.1007/BF00389424Search in Google Scholar PubMed

Rödel, G. (1997). Translational activator proteins required for cytochrome b synthesis in Saccharomyces cerevisiae. Curr. Genet.31, 375–379.10.1007/s002940050219Search in Google Scholar

Rödel, G. and Fox, T.D. (1987). The yeast nuclear gene CBS1 is required for translation of mitochondrial mRNAs bearing the cob 5′-untranslated leader. Mol. Gen. Genet.206, 45–50.10.1007/BF00326534Search in Google Scholar

Saveanu, C., Fromont-Racine, M., Harington, A., Ricard, F., Namane, A., and Jacquier, A. (2001). Identification of 12 new yeast mitochondrial ribosomal proteins including 6 thathave no prokaryotic homologues. J. Biol. Chem.276, 15861–15867.10.1074/jbc.M010864200Search in Google Scholar

Schägger, H. (2001). Blue-native gels to isolate protein complexes from mitochondria. Methods Cell Biol.65, 231–244.10.1016/S0091-679X(01)65014-3Search in Google Scholar

Schägger, H. and von Jagow, G. (1991). Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem.199, 223–231.10.1016/0003-2697(91)90094-ASearch in Google Scholar

Schmelzer, C. and Schweyen, R.J. (1982). Evidence for ribosomes involved in splicing of yeast mitochondrial transcripts. Nucleic Acids Res.10, 513–524.10.1093/nar/10.2.513Search in Google Scholar PubMed PubMed Central

Szyrach, G., Ott, M., Bonnefoy, N., Neupert, W., and Herrmann, J.M. (2003). Ribosome binding to the Oxa1 complex facilitates co-translational protein insertion in mitochondria. EMBO J.22, 6448–6457.10.1093/emboj/cdg623Search in Google Scholar PubMed PubMed Central

Zitomer, R.S. and Lowry, C.V. (1992). Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol. Rev.56, 1–11.10.1128/mr.56.1.1-11.1992Search in Google Scholar PubMed PubMed Central

Published Online: 2005-07-05
Published in Print: 2005-05-01

© Walter de Gruyter Berlin New York

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2005.049/html
Scroll to top button