Skip to main content
Log in

Acquired immunodeficiency syndrome—related malignancies in the era of highly active antiretroviral therapy

  • Progress in Hematology
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Since the beginning of the acquired immunodeficiency syndrome (AIDS) epidemic, malignancies have been an important feature of this disease. Several cancers, including Kaposi sarcoma (KS), certain aggressive B-cell lymphomas, and cervical can-cer, are considered AIDS-defining when they occur in patients infected with human immunodeficiency virus. Most AIDS defining tumors are associated with one of 3 DNA viruses: KS-associated herpesvirus, Epstein-Barr virus, or human papillo mavirus. With the introduction of highly active antiretroviral therapy (HAART), the incidence of KS and certain lymphomashas decreased, whereas that of other tumors, such as cervical cancer, has undergone little change. Several new drugs and therapies have been developed for KS and AIDS-related lymphomas, and these treatments, plus the development of HAART, have contributed to improvements in morbidity and mortality.At the same time, the improved overall survival of patients with HAART has contributed to an increase in the number of patients living with AIDS in developed countries such as the United States. With the development of HAART and improved prevention and treatment of opportunistic infections, an increasing percentage of the deaths in AIDS patients have been from malignancies. Strategies for prevention, screening, and therapy remain important areas of research in this developing field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hymes KB, Cheung T, Greene FB, et al. Kaposi’s sarcoma in homo-sexual men: a report of eight cases. Lancet. 1981;2:598–600.

    Article  CAS  PubMed  Google Scholar 

  2. Ziegler JL, Drew WL, Miner RC, et al. Outbreak of Burkitt’s lymphoma in homosexual men. Lancet. 1982;2:631–633.

    Article  CAS  PubMed  Google Scholar 

  3. Centers for Disease Control (CDC). Diffuse undifferentiated non Hodgkin’s lymphoma among homosexual males: United States. MMWR Morb Mortal Wkly Rep. 1982;31:277–279.

    Google Scholar 

  4. Centers for Disease Control (CDC). Revision of the case definition of acquired immunodeficiency syndrome for national reporting United States. MMWR Morb Mortal Wkly Rep. 1985;34:373–375.

    Google Scholar 

  5. Centers for Disease Control (CDC). 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Recomm Rep. 1992;41(RR-17):1–19.

    Google Scholar 

  6. Frisch M, Biggar RJ, Engels EA, Goedert JJ. Association of cancer with AIDS-related immunosuppression in adults. JAMA. 2001;285:1736–1745.

    Article  CAS  PubMed  Google Scholar 

  7. Boshoff C, Weiss R. AIDS-related malignancies. Nat Rev Cancer. 2002;2:373–382.

    Article  CAS  PubMed  Google Scholar 

  8. Yarchoan R, Tosato G, Little RF. Therapy insight: AIDS-related malignancies: the influence of antiviral therapy on pathogenesis and management. Nat Clin Pract Oncol. 2005;2:406–415.

    Article  CAS  PubMed  Google Scholar 

  9. Antman K, Chang Y. Kaposi’s sarcoma. N Engl J Med. 2000;342:1027–1038.

    Article  CAS  PubMed  Google Scholar 

  10. Chang Y, Cesarman E, Pessin MS, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science. 1994;266:1865–1869.

    Article  CAS  PubMed  Google Scholar 

  11. Osmond DH, Buchbinder S, Cheng A, et al. Prevalence of Kaposi sarcoma-associated herpesvirus infection in homosexual men at beginning of and during the HIV epidemic. JAMA. 2002;287:221–225.

    Article  PubMed  Google Scholar 

  12. Gao S-J, Kingsley L, Zheng ML, et al. KSHV antibodies among Americans, Italians, and Ugandans with and without Kaposi’s sarcoma. Nat Med. 1996;2:925–928.

    Article  PubMed  Google Scholar 

  13. Pauk J, Huang ML, Brodie SJ, et al. Mucosal shedding of human herpesvirus 8 in men. N Engl J Med. 2000;343:1369–1377.

    Article  CAS  PubMed  Google Scholar 

  14. Moore PS, Chang Y. Detection of herpesvirus-like DNA sequences in Kaposi’s sarcoma in patients with and without HIV infection. N Engl J Med. 1995;332:1181–1185.

    Article  CAS  PubMed  Google Scholar 

  15. Moore PS, Chang Y. Kaposi’s sarcoma-associated herpesvirus immunoevasion and tumorigenesis: two sides of the same coin? Annu Rev Microbiol. 2003;57:609–639.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Aoki Y, Tosato G. Pathogenesis and manifestations of human herpesvirus-8-associated disorders. Semin Hematol. 2003;40:143–153.

    Article  PubMed  Google Scholar 

  17. Staskus KA, Zhong W, Gebhard K, et al. Kaposi’s sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J Virol. 1997;71:715–719.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Boshoff C, Endo Y, Collins PD, et al. Angiogenic and HIVinhibitory functions of KSHV-encoded chemokines. Science. 1997;278:290–294.

    Article  CAS  PubMed  Google Scholar 

  19. Moore PS, Boshoff C, Weiss RA, Chang Y. Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science. 1996;274:1739–1744.

    Article  CAS  PubMed  Google Scholar 

  20. Boshoff C. Kaposi’s sarcoma: coupling herpesvirus to angiogenesis. Nature. 1998;391:24–25.

    Article  PubMed  Google Scholar 

  21. Bais C, Santomasso B, Coso O, et al. G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature. 1998;391:86–89.

    Article  CAS  PubMed  Google Scholar 

  22. Aoki Y, Yarchoan R, Wyvill K, Okamoto S, Little RF, Tosato G. Detection of viral interleukin-6 in Kaposi sarcoma-associated herpesvirus-linked disorders. Blood. 2001;97:2173–2176.

    Article  CAS  PubMed  Google Scholar 

  23. Haque M, Davis DA, Wang V, Widmer I, Yarchoan R. Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) contains hypoxia response elements: relevance to lytic induction by hypoxia. J Virol. 2003;77:6761–6768.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Whitby D, Howard MR, Tenant-Flowers M, et al. Detection of Kaposi sarcoma associated herpesvirus in peripheral blood of HIV-infected individuals and progression to Kaposi’s sarcoma. Lancet. 1995;346:799–802.

    Article  CAS  PubMed  Google Scholar 

  25. Samaniego F, Markham PD, Gendelman R, et al. Vascular endothelial growth factor and basic fibroblast growth factor present in Kaposi’s sarcoma (KS) are induced by inflammatory cytokines and synergize to promote vascular permeability and KS lesion development. Am J Pathol. 1998;152:1433–1443.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Aoki Y, Tosato G. HIV-1 Tat enhances Kaposi sarcoma-associated herpesvirus (KSHV) infectivity. Blood. 2004;104:810–814.

    Article  CAS  PubMed  Google Scholar 

  27. Rabkin C, Testa MA, Fischl M, Von Roenn J. Declining incidence of Kaposi’s sarcoma in AIDS Clinical Trial Group (ACTG) trials [abstract]. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;17:A39. Abstract S4.

    Article  Google Scholar 

  28. International Collaboration on HIV and Cancer. Highly active antiretroviral therapy and incidence of cancer in human immunodeficiency virus-infected adults. J Natl Cancer Inst. 2000;92:1823–1830.

    Article  Google Scholar 

  29. Clifford GM, Polesel J, Rickenbach M, et al. Cancer risk in the Swiss HIV Cohort Study: associations with immunodeficiency, smoking, and highly active antiretroviral therapy. J Natl Cancer Inst. 2005;97:425–432.

    Article  PubMed  Google Scholar 

  30. Sgadari C, Barillari G, Toschi E, et al. HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma. Nat Med. 2002;8:225–232.

    Article  CAS  PubMed  Google Scholar 

  31. Portsmouth S, Stebbing J, Gill J, et al. A comparison of regimens based on non-nucleoside reverse transcriptase inhibitors or protease inhibitors in preventing Kaposi’s sarcoma. AIDS. 2003;17:F17-F22.

    Article  CAS  PubMed  Google Scholar 

  32. Nasti G, Talamini R, Antinori A, et al. AIDS-related Kaposi’s sarcoma: evaluation of potential new prognostic factors and assessment of the AIDS Clinical Trial Group Staging System in the Haart era: the Italian Cooperative Group on AIDS and Tumors and the Italian Cohort of Patients Naïve from Antiretrovirals. J Clin Oncol. 2003;21:2876–2882.

    Article  PubMed  Google Scholar 

  33. Aversa SM, Cattelan AM, Salvagno L, et al. Treatments of AIDS related Kaposi’s sarcoma. Crit Rev Oncol Hematol. 2005;53:253–265.

    Article  PubMed  Google Scholar 

  34. Krown SE. Highly active antiretroviral therapy in AIDS-associated Kaposi’s sarcoma: implications for the design of therapeutic trials in patients with advanced, symptomatic Kaposi’s sarcoma. J Clin Oncol. 2004;22:399–402.

    Article  PubMed  Google Scholar 

  35. Martin DF, Kuppermann BD, Wolitz RA, Palestine AG, Li H, Robinson CA, for the Roche Ganciclovir Study Group. Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. N Engl J Med. 1999;340:1063–1070.

    Article  CAS  PubMed  Google Scholar 

  36. Little RF, Merced-Galindez F, Staskus K, et al. A pilot study of cidofovir in patients with Kaposi’s sarcoma. J Infect Dis. 2003;187:149–153.

    Article  CAS  PubMed  Google Scholar 

  37. Mitsuyasu RT. Update on the pathogenesis and treatment of Kaposi sarcoma. Curr Opin Oncol. 2000;12:174–180.

    Article  CAS  PubMed  Google Scholar 

  38. Kirova YM, Belembaogo E, Frikha H, et al. Radiotherapy in the management of epidemic Kaposi’s sarcoma: a retrospective study of 643 cases. Radiother Oncol. 1998;46:19–22.

    Article  CAS  PubMed  Google Scholar 

  39. Krown SE, Real FX, Cunningham-Rundles S, et al. Preliminary observations on the effect of recombinant leukocyte A interferon in homosexual men with Kaposi’s sarcoma. N Engl J Med. 1983;308:1071–1076.

    Article  CAS  PubMed  Google Scholar 

  40. Krown SE, Lee JY, Lin L, Fischl MA, Ambinder R, Von Roenn JH. Interferon-a2b with protease inhibitor-based antiretroviral therapy in patients with AIDS-associated Kaposi sarcoma: an AIDS Malignancy Consortium phase I trial. J Acquir Immune Defic Syndr. 2006;41:149–153.

    Article  CAS  PubMed  Google Scholar 

  41. Gill PS, Rarick M, McCutchan JA, et al. Systemic treatment of AIDS-related Kaposi’s sarcoma: results of a randomized trial. Am J Med. 1991;90:427–433.

    Article  CAS  PubMed  Google Scholar 

  42. Saville MW, Lietzau J, Pluda JM, et al. Treatment of HIV-associated Kaposi’s sarcoma with paclitaxel. Lancet. 1995;346:26–28.

    Article  CAS  PubMed  Google Scholar 

  43. Gill PS, Tulpule A, Espina BM, et al. Paclitaxel is safe and effective in the treatment of advanced AIDS-related Kaposi’s sarcoma. J Clin Oncol. 1999;17:1876–1883.

    CAS  PubMed  Google Scholar 

  44. Gill PS, Wernz J, Scadden DT, et al. Randomized phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS-related Kaposi’s sarcoma. J Clin Oncol. 1996;14:2353–2364.

    CAS  PubMed  Google Scholar 

  45. Stewart S, Jablonowski H, Goebel FD, et al. Randomized comparative trial of pegylated liposomal doxorubicin versus bleomycin 9 and vincristine in the treatment of AIDS-related Kaposi’s sarcoma. International Pegylated Liposomal Doxorubicin Study Group. J Clin Oncol. 1998;16:683–691.

    CAS  PubMed  Google Scholar 

  46. Martin-Carbonero L, Barrios A, Saballs P, et al, and the Caelyx/KS Spanish Group. Pegylated liposomal doxorubicin plus highly active antiretroviral therapy versus highly active antiretroviral therapy alone in HIV patients with Kaposi’s sarcoma. AIDS. 2004;18:1737–1740.

    Article  CAS  PubMed  Google Scholar 

  47. Fife K, Howard MR, Gracie F, Phillips RH, Bower M. Activity of thalidomide in AIDS-related Kaposi’s sarcoma and correlation with HHV8 titre. Int J STD AIDS. 1998;9:751–755.

    Article  CAS  PubMed  Google Scholar 

  48. Little RF, Wyvill KM, Pluda JM, et al. Activity of thalidomide in AIDS-related Kaposi’s sarcoma. J Clin Oncol. 2000;18:2593–2602.

    CAS  PubMed  Google Scholar 

  49. Cianfrocca M, Cooley TP, Lee JY, et al. Matrix metalloproteinase inhibitor COL-3 in the treatment of AIDS-related Kaposi’s sarcoma: a phase I AIDS Malignancy Consortium study. J Clin Oncol. 2002;20:153–159.

    Article  CAS  PubMed  Google Scholar 

  50. Little RF, Pluda JM, Wyvill KM, et al. Activity of subcutaneous interleukin-12 in AIDS-related Kaposi’s sarcoma. Blood. 2006;107:4650–4657.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Voest EE, Kenyon BM, O’Reilly MS, Truitt G, D’Amato RJ, Folkman J. Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst. 1995;87:581–586.

    Article  CAS  PubMed  Google Scholar 

  52. Sgadari C, Angiolillo AL, Tosato G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood. 1996;87:3877–3882.

    CAS  PubMed  Google Scholar 

  53. Geras-Raaka E, Varma A, Ho H, Clark-Lewis I, Gershengorn MC. Human interferon-7-inducible protein 10 (IP-10) inhibits constitutive signaling of Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor. J Exp Med. 1998;188:405–408.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Jaffe ES, Harris NL, Stein H, Vardiman JW. World Health Organization Classification of Tumours. Pathology & Genetics: Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2001.

    Google Scholar 

  55. Yarchoan R, Little, Richard F. Immune suppression related malignancies. In: DeVita VT, Hellman S, Rosenberg S, eds. Cancer Principles and Practice of Oncology. 7th ed. Philadelphia, Pa: Lippincott Williams & Wilkins; 2005:2247–2263.

    Google Scholar 

  56. Carbone A, Gloghini A, Larocca LM, et al. Expression profile of MUM1/IRF4, BCL-6, and CD138/syndecan-1 defines novel histogenetic subsets of human immunodeficiency virus-related lymphomas. Blood. 2001;97:744–751.

    Article  CAS  PubMed  Google Scholar 

  57. Carbone A. Emerging pathways in the development of AIDS related lymphomas. Lancet Oncol. 2003;4:22–29.

    Article  CAS  PubMed  Google Scholar 

  58. Martinez-Maza O, Breen EC. B-cell activation and lymphoma in patients with HIV. Curr Opin Oncol. 2002;14:528–532.

    Article  CAS  PubMed  Google Scholar 

  59. Finke J, Lange W, Mertelsmann R, Dolken G. BCL-2 induction is part of the strategy of Epstein-Barr virus. Leuk Lymphoma. 1994;12:413–419.

    Article  CAS  PubMed  Google Scholar 

  60. Schlaifer D, Brousset P, Attal M, et al. bcl-2 proto-oncogene and Epstein-Barr virus latent membrane protein-1 expression in AIDS-related lymphoma. Histopathology. 1994;25:77–82.

    Article  CAS  PubMed  Google Scholar 

  61. Hamilton-Dutoit SJ, Rea D, Raphael M, et al. Epstein-Barr viruslatent gene expression and tumor cell phenotype in acquired immunodeficiency syndrome-related non-Hodgkin’s lymphoma: correlation of lymphoma phenotype with three distinct patterns of viral latency. Am J Pathol. 1993;143:1072–1085.

    Google Scholar 

  62. Fais F, Gaidano G, Capello D, et al. Immunoglobulin V region gene use and structure suggest antigen selection in AIDS-related primary effusion lymphomas. Leukemia. 1999;13:1093–1099.

    Article  CAS  PubMed  Google Scholar 

  63. Carbone A, Gloghini A, Vaccher E, et al. Kaposi’s sarcoma-associated herpesvirus DNA sequences in AIDS-related and AIDS-unrelated lymphomatous effusions. Br J Haematol. 1996;94:533–543.

    Article  CAS  PubMed  Google Scholar 

  64. Nador RG, Cesarman E, Chadburn A, et al. Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi’s sarcoma-associated herpes virus. Blood. 1996;88:645–656.

    CAS  PubMed  Google Scholar 

  65. Herida M, Mary-Krause M, Kaphan R, et al. Incidence of non AIDS-defining cancers before and during the highly active antiretroviral therapy era in a cohort of human immunodeficiency virus-infected patients. J Clin Oncol. 2003;21:3447–3453.

    Article  PubMed  Google Scholar 

  66. Bonnet F, Lewden C, May T, et al. Malignancy-related causes of death in human immunodeficiency virus-infected patients in the era of highly active antiretroviral therapy. Cancer. 2004;101:317–324.

    Article  PubMed  Google Scholar 

  67. Besson C, Goubar A, Gabarre J, et al. Changes in AIDS-related lymphoma since the era of highly active antiretroviral therapy. Blood. 2001;98:2339–2344.

    Article  CAS  PubMed  Google Scholar 

  68. Little RF, Pittaluga S, Grant N, et al. Highly effective treatment of acquired immunodeficiency syndrome-related lymphoma with dose-adjusted EPOCH: impact of antiretroviral therapy suspension and tumor biology. Blood. 2003;101:4653–4659.

    Article  CAS  PubMed  Google Scholar 

  69. Lim ST, Levine AM. Recent advances in acquired immunodeficiency syndrome (AIDS)-related lymphoma. CA Cancer J Clin. 2005;55:229–241, 260-261, 264.

    Article  PubMed  Google Scholar 

  70. Arribas JR, Clifford DB, Fichtenbaum CJ, Roberts RL, Powderly WG, Storch GA. Detection of Epstein-Barr virus DNA in cerebrospinal fluid for diagnosis of AIDS-related central nervous system lymphoma. J Clin Microbiol. 1995;33:1580–1583.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Antinori A, De Rossi G, Ammassari A, et al. Value of combined approach with thallium-201 single-photon emission computed tomography and Epstein-Barr virus DNA polymerase chain reaction in CSF for the diagnosis of AIDS-related primary CNS lymphoma. J Clin Oncol. 1999;17:554–560.

    CAS  PubMed  Google Scholar 

  72. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS related body-cavity-based lymphomas. N Engl J Med. 1995;332:1186–1191.

    Article  CAS  PubMed  Google Scholar 

  73. Levine AM, Wernz JC, Kaplan L, et al. Low-dose chemotherapy with central nervous system prophylaxis and zidovudine maintenance in AIDS-related lymphoma: a prospective multi-institutional trial. JAMA. 1991;266:84–88.

    Article  CAS  PubMed  Google Scholar 

  74. Walsh C, Wernz JC, Levine A, et al. Phase I trial of m-BACOD and granulocyte macrophage colony stimulating factor in HIV associated non-Hodgkin’s lymphoma. J Acquir Immune Defic Syndr. 1993;6:265–271.

    CAS  PubMed  Google Scholar 

  75. Kaplan LD, Straus DJ, Testa MA, et al, for the National Institute of Allergy and Infectious Diseases AIDS Clinical Trials Group. Lowdose compared with standard-dose m-BACOD chemotherapy for non-Hodgkin’s lymphoma associated with human immunodeficiency virus infection. N Engl J Med. 1997;336:1641–1648.

    Article  CAS  PubMed  Google Scholar 

  76. Ratner L, Lee J, Tang S, et al. Chemotherapy for human immunodeficiency virus-associated non-Hodgkin’s lymphoma in combination with highly active antiretroviral therapy. J Clin Oncol. 2001;19:2171–2178.

    CAS  PubMed  Google Scholar 

  77. Sparano JA, Wiernik PH, Strack M, Leaf A, Becker N, Valentine ES. Infusional cyclophosphamide, doxorubicin, and etoposide in human immunodeficiency virus- and human T-cell leukemia virus type I related non-Hodgkin’s lymphoma: a highly active regimen. Blood. 1993;81:2810–2815.

    CAS  PubMed  Google Scholar 

  78. Sparano JA, Lee S, Chen MG, et al. Phase II trial of infusional cyclophosphamide, doxorubicin, and etoposide in patients with HIV-associated non-Hodgkin’s lymphoma: an Eastern Cooperative Oncology Group trial (E1494). J Clin Oncol. 2004;22:1491–1500.

    Article  CAS  PubMed  Google Scholar 

  79. Wilson WH, Grossbard ML, Pittaluga S, et al. Dose-adjusted EPOCH chemotherapy for untreated large B-cell lymphomas: a pharmacodynamic approach with high efficacy. Blood. 2002;99:2685–2693.

    Article  CAS  PubMed  Google Scholar 

  80. Kaplan LD, Lee JY, Ambinder RF, et al. Rituximab does not improve clinical outcome in a randomized phase 3 trial of CHOP with or without rituximab in patients with HIV-associated nonHodgkin lymphoma: AIDS-Malignancies Consortium Trial 010. Blood. 2005;106:1538–1543.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Hoffmann C, Tabrizian S, Wolf E, et al. Survival of AIDS patients with primary central nervous system lymphoma is dramatically improved by HAART-induced immune recovery. AIDS. 2001;15:2119–2127.

    Article  CAS  PubMed  Google Scholar 

  82. Raez LE, Patel P, Feun L, Restrepo A, Raub WA {jrJr}, Cassileth PA. Natural history and prognostic factors for survival in patients with 10 acquired immune deficiency syndrome (AIDS)-related primary central nervous system lymphoma (PCNSL). Crit Rev Oncog. 1998;9:199–208.

    CAS  PubMed  Google Scholar 

  83. Forsyth PA, Yahalom J, DeAngelis LM. Combined-modality therapy in the treatment of primary central nervous system lymphoma in AIDS. Neurology. 1994;44:1473–1479.

    Article  CAS  PubMed  Google Scholar 

  84. Ling SM, Roach M 3rd, Larson DA, Wara WM. Radiotherapy of primary central nervous system lymphoma in patients with and without human immunodeficiency virus: ten years of treatment experience at the University of California San Francisco. Cancer. 1994;73:2570–2582.

    Article  CAS  PubMed  Google Scholar 

  85. Skiest DJ, Crosby C. Survival is prolonged by highly active antiretroviral therapy in AIDS patients with primary central nervous system lymphoma. AIDS. 2003;17:1787–1793.

    Article  PubMed  Google Scholar 

  86. Jacomet C, Girard PM, Lebrette MG, Farese VL, Monfort L, Rozenbaum W. Intravenous methotrexate for primary central nervous system non-Hodgkin’s lymphoma in AIDS. AIDS. 1997;11:1725–1730.

    Article  CAS  PubMed  Google Scholar 

  87. Bosch FX, de Sanjose S. Chapter 1: human papillomavirus and cervical cancer—burden and assessment of causality. J Natl Cancer Inst Monogr. 2003:3-13.

  88. Ellerbrock TV, Chiasson MA, Bush TJ, et al. Incidence of cervical squamous intraepithelial lesions in HIV-infected women. JAMA. 2000;283:1031–1037.

    Article  CAS  PubMed  Google Scholar 

  89. Palefsky JM. Anal squamous intraepithelial lesions: relation to HIV and human papillomavirus infection. J Acquir Immune Defic Syndr. 1999;21(suppl 1):S42-S48.

    PubMed  Google Scholar 

  90. Palefsky JM, Holly EA, Ralston ML, Da Costa M, Greenblatt RM. Prevalence and risk factors for anal human papillomavirus infection in human immunodeficiency virus (HIV)-positive and highrisk HIV-negative women. J Infect Dis. 2001;183:383–391.

    Article  CAS  PubMed  Google Scholar 

  91. Palefsky JM, Holly EA, Ralston ML, Jay N. Prevalence and risk factors for human papillomavirus infection of the anal canal in human immunodeficiency virus (HIV)-positive and HIV-negative homosexual men. J Infect Dis. 1998;177:361–367.

    Article  CAS  PubMed  Google Scholar 

  92. Critchlow CW, Surawicz CM, Holmes KK, et al. Prospective study of high grade anal squamous intraepithelial neoplasia in a cohort of homosexual men: influence of HIV infection, immunosuppression and human papillomavirus infection. AIDS. 1995;9:1255–1262.

    Article  CAS  PubMed  Google Scholar 

  93. Palefsky JM, Minkoff H, Kalish LA, et al. Cervicovaginal human papillomavirus infection in human immunodeficiency virus-1 (HIV)-positive and high-risk HIV-negative women. J Natl Cancer Inst. 1999;91:226–236.

    Article  CAS  PubMed  Google Scholar 

  94. Harris TG, Burk RD, Palefsky JM, et al. Incidence of cervical squamous intraepithelial lesions associated with HIV serostatus, CD4 cell counts, and human papillomavirus test results. JAMA. 2005;293:1471–1476.

    Article  CAS  PubMed  Google Scholar 

  95. Minkoff H, Ahdieh L, Massad LS, et al. The effect of highly active antiretroviral therapy on cervical cytologic changes associated with oncogenic HPV among HIV-infected women. AIDS. 2001;15:2157–2164.

    Article  CAS  PubMed  Google Scholar 

  96. Heard I, Tassie JM, Kazatchkine MD, Orth G. Highly active antiretroviral therapy enhances regression of cervical intraepithelial neoplasia in HIV-seropositive women. AIDS. 2002;16:1799–1802.

    Article  CAS  PubMed  Google Scholar 

  97. Cases of HIV infection and AIDS in the United States, 2003. Basic statistics page (data from the CDC HIV/AIDS surveillance report: HIV infection and AIDS in the United States, 2004). Centers for Disease Control and Prevention Web site. Available at: http://www.cdc.gov/hiv/topics/surveillance/basic.htm. Accessed June 7, 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Yarchoana.

About this article

Cite this article

Bernstein, W.B., Little, R.F., Wilson, W.H. et al. Acquired immunodeficiency syndrome—related malignancies in the era of highly active antiretroviral therapy. Int J Hematol 84, 3–11 (2006). https://doi.org/10.1532/IJH97.06088

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.06088

Key words

Navigation