Skip to main content
Log in

Molecular Mechanisms of Lymphangiogenesis

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Although the process of vascular development has been well documented, little is understood about lymphatic vasculature formation, despite its importance in normal and pathologic conditions.The dysfunction or abnormal growth of lymphatic vessels is associated with lymphedema and cancer metastasis. The recent discovery of lymphangiogenic growth factors vascular endothelial growth factor (VEGF)-C and VEGF-D and of their receptor,VEGFR-3, on lymphatic endothelial cells has started to provide an understanding of the molecular mechanisms of lymphangiogenesis. In addition, other genes that participate in the specification of lymphatic endothelial cells and the modulation of lymphatic vascular development have been identified. The capacity to induce or inhibit lymphangiogenesis by the manipulation of such molecules offers new opportunities to understand the function of the lymphatic system and to develop novel treatments for lymphatic disorders.This review describes the main players in lymphangiogenesis that have been identified so far and the attempts to shed some light on the mysteries surrounding this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kubo H, Alitalo K.The bloody fate of endothelial stem cells. Genes Dev. 2003;17:322–329.

    Article  CAS  PubMed  Google Scholar 

  2. Pardanaud L, Luton D, Prigent M, Bourcheix LM, Catala M, Dieterlen-Lievre F. Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development. 1996;122: 1363–1371.

    PubMed  CAS  Google Scholar 

  3. Tischer E, Mitchell R, Hartman T, et al. The human gene for vascular endothelial growth factor: multiple protein forms are encoded through alternative exon splicing. J Biol Chem. 1991;266: 11947–11954.

    PubMed  CAS  Google Scholar 

  4. Fong GH, Rossant J, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature. 1995;376:65–69.

    Article  Google Scholar 

  5. Bellomo D, Headrick JP, Silins GU, et al. Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ Res. 2000;86:E29-E35.

    Article  CAS  PubMed  Google Scholar 

  6. Carmeliet P, Moons L, Luttun A, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med. 2001;7:575–583.

    Article  CAS  PubMed  Google Scholar 

  7. Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995; 376:62–65.

    Article  CAS  PubMed  Google Scholar 

  8. Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 1996;15:290–298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Achen MG, Jeltsch M, Kukk E, et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci U S A. 1998;95:548–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Joukov V, Sorsa T, Kumar V, et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 1997;16: 3898–3911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jeltsch M, Kaipainen A, Joukov V, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science. 1997;276:1423–1425.

    Article  CAS  PubMed  Google Scholar 

  12. Joukov V, Kumar V, Sorsa T, et al. A recombinant mutant vascular endothelial growth factor-C that has lost vascular endothelial growth factor receptor-2 binding, activation, and vascular permeability activities. J Biol Chem. 1998;273:6599–6602.

    Article  CAS  PubMed  Google Scholar 

  13. Veikkola T, Jussila L, Makinen T, et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J. 2001;20:1223–1231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karkkainen MJ, Haiko P, Sainio K, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol. 2004;5:74–80.

    Article  CAS  PubMed  Google Scholar 

  15. Dixelius J, Makinen T,Wirzenius M, et al. Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J Biol Chem. 2003;278: 40973–40979.

    Article  CAS  PubMed  Google Scholar 

  16. Matsumura K, Hirashima M, Ogawa M, et al. Modulation of VEGFR-2-mediated endothelial-cell activity by VEGF-C/ VEGFR-3. Blood. 2003;101:1367–1374.

    Article  CAS  PubMed  Google Scholar 

  17. Galland F, Karamysheva A, Mattei MG, Rosnet O, Marchetto S, Birnbaum D. Chromosomal localization of FLT4, a novel receptortype tyrosine kinase gene. Genomics. 1992;13:475–478.

    Article  CAS  PubMed  Google Scholar 

  18. Kaipainen A, Korhonen J, Mustonen T, et al. Expression of the fmslike tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci U S A. 1995; 92:3566–3570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dumont DJ, Jussila L, Taipale J, et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science. 1998;282: 946–949.

    Article  CAS  PubMed  Google Scholar 

  20. Mäkinen T, Jussila L, Veikkola T, et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med. 2001;7:199–205.

    Article  PubMed  Google Scholar 

  21. Kubo H, Fujiwara T, Jussila L, et al. Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood. 2000;96: 546–553.

    PubMed  CAS  Google Scholar 

  22. Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87:1171–1180.

    Article  CAS  PubMed  Google Scholar 

  23. Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997; 277:55–60.

    Article  CAS  PubMed  Google Scholar 

  24. Gale NW, Thurston G, Hackett SF, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev Cell. 2002;3:411–423.

    Article  CAS  PubMed  Google Scholar 

  25. Thurston G. Role of angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis. Cell Tissue Res. 2003;314:61–68.

    Article  CAS  PubMed  Google Scholar 

  26. Oliver G, Sosa-Pineda B, Geisendorf S, Spana EP, Doe CQ, Gruss P. Prox 1, a prospero-related homeobox gene expressed during mouse development. Mech Dev. 1993;44:3–16.

    Article  CAS  PubMed  Google Scholar 

  27. Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell. 1999;98:769–778.

    Article  CAS  PubMed  Google Scholar 

  28. Wigle JT, Harvey N, Detmar M, et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 2002;21:1505–1513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Petrova TV, Makinen T, Makela TP, et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 2002;21:4593–4599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abtahian F, Guerriero A, Sebzda E, et al. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science. 2003;299:247–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferrell RE, Levinson KL, Esman JH, et al. Hereditary lymphedema: evidence for linkage and genetic heterogeneity. Hum Mol Genet. 1998;7:2073–2078.

    Article  CAS  PubMed  Google Scholar 

  32. Karkkainen MJ, Ferrell RE, Lawrence EC, et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet. 2000;25:153–159.

    Article  CAS  PubMed  Google Scholar 

  33. Irrthum A, Karkkainen MJ, Devriendt K, Alitalo K, Vikkula M. Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet. 2000;67: 295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karkkainen MJ, Saaristo A, Jussila L, et al. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci U S A. 2001;98:12677–12682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jussila L, Valtola R, Partanen TA, et al. Lymphatic endothelium and Kaposi’s sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor-3. Cancer Res. 1998;58:1599–1604.

    PubMed  CAS  Google Scholar 

  36. Su JL, Shih JY, Yen ML, et al. Cyclooxygenase-2 induces EP1- and HER-2/Neu-dependent vascular endothelial growth factor-C upregulation: a novel mechanism of lymphangiogenesis in lung adenocarcinoma. Cancer Res. 2004;64:554–564.

    Article  CAS  PubMed  Google Scholar 

  37. Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 2001;7:192–198.

    Article  CAS  PubMed  Google Scholar 

  38. Skobe M, Hamberg LM, Hawighorst T, et al. Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am J Pathol. 2001;159:893–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shimizu K, Satoh S, Kubo H, et al. VEGFR-3 positive vessels as a target of inhibition of lymph node metastasis in gastric cancer. Cancer Sci. In press.

  40. He Y, Kozaki K, Karpainen T, et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst. 2002;94:819–825.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Kubo.

About this article

Cite this article

Takahashi, M., Yoshimoto, T. & Kubo, H. Molecular Mechanisms of Lymphangiogenesis. Int J Hematol 80, 29–34 (2004). https://doi.org/10.1532/IJH97.04042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.04042

Key words

Navigation