Skip to main content
Log in

Microstructural and electrical properties of Ce0.9Gd0.1O1.95 thin-film electrolyte in solid-oxide fuel cells

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microstructural and electrical properties of Gd-doped CeO2 (GDC; Ce0.9Gd0.1O1.95) thin films prepared by pulsed laser deposition as an electrolyte in solid-oxide fuel cells (SOFCs) were investigated. The GDC thin films were prepared on various substrates including single-crystal yttria-stabilized zirconia (YSZ) and magnesium oxide (MgO) substrates. The GDC thin-film electrolytes with different grain sizes and grain morphologies were prepared by varying the deposition parameters, such as substrate temperature, oxygen partial pressure, target repetition rate, and laser ablation energy. The microstructural properties of these films were examined using X-ray diffraction (XRD), transmission electron microscopy (TEM), and atomic force microscopy (AFM). Alternating-current (AC) and direct-current (DC) electrical measurements through in-plane method show that the electrical property of the GDC thin film strongly depends on grain size, e.g., the total conductivity of the films deposited at 700 °C (7.3 × 10−3 S/cm) is about 20 times higher than the ones deposited at room temperature (3.6 × 10−4 S/cm) at the measurement temperature of 600 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.C.H. Steel: Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ionics 129, 95 (2000).

    Article  Google Scholar 

  2. T. Suzuki, I. Kosacki, and H.U. Anderson: Microstructure–electrical conductivity relationships in nanocrystalline ceria thin films. Solid State Ionics 151, 111 (2002).

    Article  CAS  Google Scholar 

  3. D.X. Huang, C.L. Chen, and A.J. Jacobson: Interface structures and periodic film distortions induced by substrate-surface steps in Gd-doped ceria thin-film growth. Appl. Phys. Lett. 87, 043506–1 (2005).

    Article  Google Scholar 

  4. D.X. Huang, C.L. Chen, L. Chen, and A.J. Jacobson: Strain relaxation by directionally aligned precipitate nanoparticles in the growth of single-crystalline Gd-doped ceria thin films. Appl. Phys. Lett. 84, 708 (2004).

    Article  CAS  Google Scholar 

  5. C. Kleinlogel and L.J. Gauckler: Sintering and properties of nanosized ceria solid solutions. Solid State Ionics 135, 567 (2000).

    Article  CAS  Google Scholar 

  6. G. Chiodelli, L. Malavasi, V. Massarotti, P. Mustarelli, and E. Quartarone: Synthesis and characterization of Ce0.8Gd0.2O2−y polycrystalline and thin film materials. Solid State Ionics 176, 1505 (2005).

    Article  CAS  Google Scholar 

  7. T. Ishihara, T. Shibayama, M. Honda, H. Nishiguchi, and Y. Takita: Intermediate temperature solid oxide fuel using LaGaO3 electrolyte II. Cells improvement of oxide ion conductivity and power density by doping Fe for Ga site of LaGaO3. J. Electrochem. Soc. 147, 1332 (2000).

    Article  CAS  Google Scholar 

  8. J.W. Kim, A.V. Virkar, K.Z. Fung, K. Mehta, and S.C. Singhal: Polarization effects in intermediate temperature anode-supported solid oxide fuel cells. J. Electrochem. Soc. 146, 9 (1999).

    Google Scholar 

  9. J. Will, A. Mitterdorfer, C. Kleinlongel, D. Perednis, and L.J. Gauckler: Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ionics 131, 79 (2000).

    Article  CAS  Google Scholar 

  10. R. Maric, S. Ohara, T. Fukui, H. Yoshida, M. Nishimura, T. Inagaki, and K. Miura: Solid oxide fuel cells with doped lanthanum gallate electrolyte and LaSrCoO3 cathode, and Ni-samaria-doped ceria cermet anode. J. Electrochem. Soc. 146, 2006 (1999).

    Article  CAS  Google Scholar 

  11. C. Xia and M. Liu: Novel cathodes for low-temperature solid oxide fuel cells. J. Adv. Mater. 14, 521 (2002).

    Article  CAS  Google Scholar 

  12. T. Ishihara, K. Sato, and Y. Takita: Electrophoretic deposition of Y2O3-stabilized ZrO2 electrolyte films in solid oxide fuel cells. J. Am. Ceram. Soc. 79, 913 (1996).

    Article  CAS  Google Scholar 

  13. J.A. Kilner: Fast oxygen transport in acceptor doped oxides. Solid State Ionics 129, 13 (2000).

    Article  CAS  Google Scholar 

  14. S. de Souza, S.J. Visco, and L.C. de Jonghe: Thin-film solid oxide fuel cell with high performance at low-temperature. Solid State Ionics 98, 57 (1997).

    Article  Google Scholar 

  15. C. Xia, F. Chen, and M. Liu: Reduced-temperature solid oxide fuel cells fabricated by screen printing. Electrochem. Solid-State Lett. 4, A52 (2001).

    Article  CAS  Google Scholar 

  16. S.P. Jiang, Y.J. Leng, S.H. Chan, and K.A. Khor: Development of (La,Sr)MnO3-based cathodes for intermediate temperature solid oxide fuel cells. Electrochem. Solid-State Lett. 6, A67 (2003).

    Article  CAS  Google Scholar 

  17. J.L.M. Rupp and L.J. Gauckler: Microstructures and electrical conductivity of nanocrystalline ceria-based thin films. Solid State Ionics 177, 2513 (2006).

    Article  CAS  Google Scholar 

  18. Y.-L. Kuo, C. Lee, Y.-S. Chen, and H. Liang: Gadolinia-doped ceria films deposited by RF reactive magnetron sputtering. Solid State Ionics 180, 1421 (2009).

    Article  CAS  Google Scholar 

  19. L. Chen, C.L. Chen, X. Chen, W. Donner, S.W. Liu, Y. Lin, D.X. Huang, and A.J. Jacobson: Electrical properties of a highly oriented, textured thin film of the ionic conductor Gd:CeO2−δ on (001) MgO. Appl. Phys. Lett. 83, 4737 (2003).

    Article  CAS  Google Scholar 

  20. J.H. Joo and G.M. Choi: Electrical conductivity of thin film ceria grown by pulsed laser deposition. Solid State Ionics 27, 4273 (2007).

    CAS  Google Scholar 

  21. A. Infortuna, A.S. Harvey, and L.J. Gauckler: Microstructures of CGO and YSZ thin films by pulsed laser deposition. J. Adv. Funct. Mater. 18, 127 (2008).

    Article  CAS  Google Scholar 

  22. K. Rodrigo, J. Knudsen, N. Pryds, J. Schou, and S. Linderoth: Characterization of yttria- stabilized zirconia thin films grown by pulsed laser deposition (PLD) on various substrates. Appl. Surf. Sci. 254, 1338 (2007).

    Article  CAS  Google Scholar 

  23. H. Wang, A. Sharma, and A. Kvit: Mechanical properties of nanocrystalline and epitaxial TiN films on (100) silicon. J. Mater. Res. 16, 9 (2001).

    Article  CAS  Google Scholar 

  24. J.S. Yoon, R. Araujo, N. Grunbaum, L. Baque, A. Serquis, A. Caneiro, X.H. Zhang, and H. Wang: Nanostructured cathode thin films with vertically-aligned nanopores for thin film SOFC and their characteristics. Appl. Surf. Sci. 254, 266 (2007).

    Article  CAS  Google Scholar 

  25. J.S. Yoon, S.M. Cho, J-H. Kim, J.H. Lee, Z. Bi, A. Serquis, X. Zhang, A. Manthiram, and H. Wang: Vertically aligned nanocomposite thin films as a cathode-electrolyte interface layer for thin film solid oxide fuel cells. J. Adv. Funct. Mater. 19, 1 (2009).

    Google Scholar 

  26. X. Zhou, W. Huebner, I. Kosacki, and H.U. Anderson: Microstructure and grain boundary effect on electrical properties of gadolinium-doped ceria. J. Am. Ceram. Soc. 85, 1757 (2002).

    Article  CAS  Google Scholar 

  27. S.R. Hui, J. Roller, X. Zhang, C.D. Petit, Y. Xie, R. Maric, and D. Ghosh: Various approaches to enhance ionic conductivity of selected oxide electrolytes. J. Electrochem. Soc. 2, 964 (2005) (Solid Oxide Fuel Cell IX).

    Google Scholar 

  28. E. Barsoukov and J.R. Macdonald: Impedance Spectroscopy Theory, Experiment, and Applications, 2nd ed. (John Wiley & Sons, 2005) p. 241.

    Book  Google Scholar 

Download references

Acknowledgments

Part of the work was funded by National Science Foundation (NSF 0709831 and NSF 1007969), United States Air Force Office of Scientific Research (Contract Nos.: FA9550-07-1-0108 and FA9550-09-1-0114), and DOE Center for Integrated Nanotechnologies (CINT). The work at the University of Texas at Austin was funded by Welch Foundation (Grant No.: F-1254).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, S., Yoon, J., Kim, JH. et al. Microstructural and electrical properties of Ce0.9Gd0.1O1.95 thin-film electrolyte in solid-oxide fuel cells. Journal of Materials Research 26, 854–859 (2011). https://doi.org/10.1557/jmr.2010.72

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.72

Navigation