Skip to main content
Log in

Effect of surface conditions and strain hardening on the passivity breakdown of 304 stainless steel

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Electrical and electrochemical properties of the passive layer formed on 304L austenitic stainless steel are investigated by means of both conductive atomic force microscopy in air and electrochemical atomic force microscopy in chloride-containing media. The maps of local electrical conductivity of the oxide overlayer exhibit different patterns depending on the surface conditions after mechanical or electrochemical polishing. In particular, the passive film covering strain-hardened regions reveals a higher electrical conductivity. The local enhancement of the electrical conduction is explained by local changes of the stoichiometry of the passive film. Moreover, the highly conductive regions lead to a local breakdown of the native oxide in chloride-containing media and favor the initiation of localized pits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. B. Baroux: Further insights on the pitting corrosion of stainless steels, in Corrosion Mechanisms in Theory and Practice, edited by Ph. Marcus (Marcel Dekker, New York, 2002), pp. 311–347 (Chapter 10).

    Chapter  Google Scholar 

  2. S.E. Lott and R.C. Alkire: The role of inclusions on initiation of crevice corrosion of stainless steel. J. Electrochem. Soc. 136, 973 (1989).

    Article  CAS  Google Scholar 

  3. D.E. Williams and Y.Y. Zhu: Explanation for initiation of pitting corrosion of stainless steels at sulfide inclusions. J. Electrochem. Soc. 147, 1763 (2000).

    Article  CAS  Google Scholar 

  4. V. Vignal, H. Krawiec, O. Heintz, and R. Oltra: The use of local electrochemical probes and surface analysis methods to study the electrochemical behaviour and pitting corrosion of stainless steels. Electrochim. Acta 52, 4994 (2007).

    Article  CAS  Google Scholar 

  5. C. Boulleret, J.L. Pastol, J. Bigot, B. Baroux, and D. Gorse: Pitting resistance of pure Fe-17%Cr alloys: Consequences for localized corrosion modeling. J. Phys. IV Fr. 5, C7, 415–422 (1995).

    Article  Google Scholar 

  6. D. Gorse and B. Baroux: Investigating pitting corrosion of stainless steels by signal processing techniques, in Passivity of Metals and Semiconductors, edited by M.B. Ives, J.L. Luo, and J.R. Rodda (Electrochemical Society Proceedings, Vol. 99, 1999), p. 528.

    Google Scholar 

  7. S.B. Basame and H.S. White: Scanning electrochemical microscopy of native titanium oxide films. Mapping the potential dependence of spatially-localized electrochemical reactions. J. Phys. Chem. 99, 16430 (1995).

    Article  CAS  Google Scholar 

  8. S.B. Basame and H.S. White: Scanning electrochemical microscopy: measurement of the current Density at microscopic redox-active sites on titanium. J. Phys. Chem. B 102, 9812 (1998).

    Article  CAS  Google Scholar 

  9. S.B. Basame and H.S. White: Pitting corrosion of titanium: The relationship between pitting potential and competitive anion adsorption at the oxide film/electrolyte interface. J. Electrochem. Soc. 147, 1376 (2000).

    Article  CAS  Google Scholar 

  10. N. Casillas, S.J. Charlebois, W.H. Smyrl, and H.S. White: Scanning electrochemical microscopy of precursor sites for pitting corrosion on titanium. J. Electrochem. Soc. 140, L142 (1993).

    Article  CAS  Google Scholar 

  11. N. Casillas, S.J. Charlebois, W.H. Smyrl, and H.S. White: Pitting corrosion of titanium. J. Electrochem. Soc. 141, 636 (1994).

    Article  CAS  Google Scholar 

  12. Y. Yin, L. Niu, M. Lu, W. Guo, and S. Chen: In situ characterization of localized corrosion of stainless steel by scanning electrochemical microscope. Appl. Surf. Sci. 255, 9193 (2009).

    Article  CAS  Google Scholar 

  13. P. Marcus, V. Maurice, and H.H. Strehblow: Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure. Corros. Sci. 50, 2698 (2008).

    Article  CAS  Google Scholar 

  14. H-H. Strehblow: Mechanism of pitting corrosion. Corrosion Mechanism in Theory and Practice, 2nd edition. Edited by P. Marcus, (Marcel Dekker: New York, 2002), pp. 243–285.

    Chapter  Google Scholar 

  15. J. Amri, T. Souier, B. Malki, and B. Baroux: Effect of the final annealing of cold rolled stainless steels sheets on the electronic properties and pit nucleation resistance of passive films. Corros. Sci. 50, 431 (2008).

    Article  CAS  Google Scholar 

  16. T. Souier, B. Berthome, B. Malki, and B. Baroux: Effect of the passive film on the crevice corrosion of stainless steels experimental and modeling approaches. ECS Trans. 16, 321 (2009).

    Article  CAS  Google Scholar 

  17. L. Peguet, B. Malki, and B. Baroux: Influence of cold working on the pitting corrosion resistance of stainless steels. Corros. Sci. 49, 1933 (2007).

    Article  CAS  Google Scholar 

  18. V. Vignal, N. Mary, and R. Oltra: Study of the mechanical effects of passivity breakdown by local probe techniques, in Passivation of Metals and Semiconductors, and Properties of Thin Oxide Layers, edited by P. Marcus and V. Maurice (Paris, France, 2006), pp. 463–468.

    Chapter  Google Scholar 

  19. J.R. Galvele: Transport processes and the mechanism of pitting of metals. J. Electrochem. Soc. 123, 464 (1976).

    Article  CAS  Google Scholar 

  20. F.A. Martin, C. Bataillon, and J. Cousty: In situ AFM detection of pit onset location on a 304L stainless steel. Corros. Sci. 50, 84 (2008).

    Article  CAS  Google Scholar 

  21. P.J. Pinhero, T.E. Lister, T.L. Trowbridge, and R.E. Mizia: Analysis of local defects in surface films on commercial alloys using conductive atomic force microscopy (C-AFM), Corrosion Nace International, 03380 (2003).

    Google Scholar 

  22. T. Souier, F. Martin, C. Bataillon, and J. Cousty: Local electrical characteristics of passive films formed on stainless steel surfaces by current sensing atomic force microscopy. Appl. Surf. Sci. 256, 2434 (2010).

    Article  CAS  Google Scholar 

  23. Asylum Research: http://www.asylumresearch.com/Applications/Orca/Orca.shtml.

  24. NANOSENSORS™: http://www.nanosensors.com/CDT-NCHR.htm.

  25. E.M. Gutman: Mechanochemistry of Solid Surfaces (World Scientific Publishing, 1994).

    Book  Google Scholar 

  26. V. Vignal, O. Delrue, O. Heintz, and J. Peultier: Influence of the passive film properties and residual stresses on the micro-electrochemical behavior of duplex stainless steels. Electrochim. Acta 55, 7118 (2010).

    Article  CAS  Google Scholar 

  27. J. Sort, A. Concustell, E. Menendez, S. Surinach, M.D. Baro, J. Farran, and J. Nogues: Selective generation of local ferromagnetism in austenitic stainless steel using nanoindentation. Appl. Phys. Lett. 89, 032509 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tewfik Souier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souier, T., Chiesa, M. Effect of surface conditions and strain hardening on the passivity breakdown of 304 stainless steel. Journal of Materials Research 27, 1580–1588 (2012). https://doi.org/10.1557/jmr.2012.5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.5

Navigation