Skip to main content
Log in

Analysis of the 3′ ends of tRNA as the cause of insertion sites of foreign DNA in Prochlorococcus

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the characteristics of transfer RNA (tRNA) responsible for the association between tRNA genes and genes of apparently foreign origin (genomic islands) in five high-light adapted Prochlorococcus strains. Both bidirectional best BLASTP (basic local alignment search tool for proteins) search and the conservation of gene order against each other were utilized to identify genomic islands, and 7 genomic islands were found to be immediately adjacent to tRNAs in Prochlorococcus marinus AS9601, 11 in P. marinus MIT9515, 8 in P. marinus MED4, 6 in P. marinus MIT9301, and 6 in P. marinus MIT9312. Monte Carlo simulation showed that tRNA genes are hotspots for the integration of genomic islands in Prochlorococcus strains. The tRNA genes associated with genomic islands showed the following characteristics: (1) the association was biased towards a specific subset of all iso-accepting tRNA genes; (2) the codon usages of genes within genomic islands appear to be unrelated to the codons recognized by associated tRNAs; and, (3) the majority of the 3′ ends of associated tRNAs lack CCA ends. These findings contradict previous hypotheses concerning the molecular basis for the frequent use of tRNA as the insertion site for foreign genetic materials. The analysis of a genomic island associated with a tRNA-Asn gene in P. marinus MIT9301 suggests that foreign genetic material is inserted into the host genomes by means of site-specific recombination, with the 3′ end of the tRNA as the target, and during the process, a direct repeat of the 3′ end sequence of a boundary tRNA (namely, a scar from the process of insertion) is formed elsewhere in the genomic island. Through the analysis of the sequences of these targets, it can be concluded that a region characterized by both high GC content and a palindromic structure is the preferred insertion site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25(17):3389–3402. [doi:10.1093/nar/25.17.3389]

    Article  CAS  PubMed  Google Scholar 

  • Baar, C., Eppinger, M., Raddatz, G., Simon, J., Lanz, C., Klimmer, O., Nandakumar, R., Cross, R., Rosinus, A., Keller, H., et al., 2003. Complete genome sequence and analysis of Wolinella succinogenes. PNAS, 100(20):11690–11695. [doi:10.1073/pnas.1932838100]

    Article  CAS  PubMed  Google Scholar 

  • Boto, L., 2010. Horizontal gene transfer in evolution: facts and challenges. Proc. R. Soc. B, 277(1683):819–827. [doi:10.1098/rspb.2009.1679]

    Article  PubMed  Google Scholar 

  • Cheetham, B.F., Katz, M.E., 1995. A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol. Microbiol., 18(2):201–208. [doi:10.1111/j.1365-2958.1995.mmi_18020201.x]

    Article  CAS  PubMed  Google Scholar 

  • Choi, I.G., Kim, S.H., 2007. Global extent of horizontal gene transfer. PNAS, 104(11):4489–4494. [doi:10.1073/pnas.0611557104]

    Article  CAS  PubMed  Google Scholar 

  • Coleman, M.L., Sullivan, M.B., Martiny, A.C., Steglich, C., Barry, K., Delong, E.F., Chisholm, S.W., 2006. Genomic islands and the ecology and evolution of Prochlorococcus. Science, 311(5768):1768–1770. [doi:10.1126/science.1122050]

    Article  CAS  PubMed  Google Scholar 

  • Elhai, J., Taton, A., Massar, J.P., Myers, J.K., Travers, M., Casey, J., Slupesky, M., Shrager, J., 2009. BioBIKE: a Web-based, programmable, integrated biological knowledge base. Nucleic Acids Res., 37(web server):W28–W32. [doi:10.1093/nar/gkp354]

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Vallvé, V.S., Romeu, A., Palau, J., 2000. Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res., 10(11):1719–1725. [doi:10.1101/gr.130000]

    Article  PubMed  Google Scholar 

  • Hacker, J., Carniel, E., 2001. Ecological fitness, genomic islands and bacterial pathogenicity. EMBO Rep., 2(5):376–381.

    CAS  PubMed  Google Scholar 

  • Hess, W.R., Rocap, G., Ting, C.S., Larimer, F., Stilwagen, S., Lamerdin, J., Chisholm, S.W., 2001. The photosynthetic apparatus of Prochlorococcus: insights through comparative genomics. Photosynth. Res., 70(1):53–71. [doi:10.1023/A:1013835924610]

    Article  CAS  PubMed  Google Scholar 

  • Hou, Y.M., 1999. Transfer RNAs and pathogenicity islands. Trends Biochem. Sci., 24(8):295–298. [doi:10.1016/S0968-0004(99)01428-0]

    Article  CAS  PubMed  Google Scholar 

  • Hsiao, W., Wan, I., Jones, S.J., Brinkman, F.S.L., 2003. IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics, 19(3):418–420. [doi:10.1093/bioinformatics/btg004]

    Article  CAS  PubMed  Google Scholar 

  • Kettler, G.C., Martiny, A.C., Huang, K., Zuker, J., Coleman, M.L., Rodrigue, S., Chen, F., Lapidus, A., Ferriera, S., Johnson, J., et al., 2007. Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genet., 3(12):e231. [doi:10.1371/journal.pgen.0030231]

    Article  PubMed  Google Scholar 

  • Koonin, E.V., 2009. Darwinian evolution in the light of genomics. Nucleic Acids Res., 37(4):1011–1034. [doi:10.1093/nar/gkp089]

    Article  CAS  PubMed  Google Scholar 

  • Koonin, E.V., Makarova, K.S., Aravind, L., 2001. Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol., 55(1):709–742. [doi:10.1146/annurev.micro.55.1.709]

    Article  CAS  PubMed  Google Scholar 

  • Liu, H.L., Zhu, J., 2010. Identification of genomic islands in the genomes of five Prochlorococcus strains by multiple genomic comparison. J. Zhejiang Univ. (Agric. & Life Sci.), 36(5):473–484.

    Google Scholar 

  • Nakamura, Y., Itoh, T., Matsuda, H., Gojobori, T., 2004. Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat. Genet., 36(7):760–766. [doi:10.1038/ng1381]

    Article  CAS  PubMed  Google Scholar 

  • Nelson, K.E., Clayton, R.A., Gill, S.R., Gwinn, M.L., Dodson, R.J., Haft, D.H., Hickey, E.K., Peterson, J.D., Nelson, W.C., Ketchum, K.A., et al., 1999. Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritime. Nature, 399(6734):323–329. [doi:10.1038/20601]

    Article  CAS  PubMed  Google Scholar 

  • Parreira, V.R., Gyles, C.L., 2003. A novel pathogenicity island integrated adjacent to the thrW tRNA gene of avian pathogenic Escherichia coli encodes a vacuolating autotransporter toxin. Infect. Immun., 71(9):5087–5096. [doi:10.1128/IAI.71.9.5087-5096.2003]

    Article  CAS  PubMed  Google Scholar 

  • Partensky, F., Hess, W.R., Vaulot, D., 1999. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev., 63(1):106–127.

    CAS  PubMed  Google Scholar 

  • Reiter, W.D., Palm, P., Yeats, S., 1989. Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res., 17(5):1907–1914. [doi:10.1093/nar/17.5.1907]

    Article  CAS  PubMed  Google Scholar 

  • Ritter, A., Blum, G., Emody, L., Kerenyi, M., Bock, A., Neuhieri, B., Rabsch, W., Scheutz, F., Hacker, J., 1995. tRNA genes and pathogenicity islands: influence on virulence and metabolic properties of uropathogenic Escherichia coli. Mol. Microbiol., l7(1):109–121. [doi:10.1111/j.1365-2958.1995.mmi_17010109.x]

    Article  Google Scholar 

  • Rocap, G., Larimer, F.W., Lamerdin, J., Malfatti, S., Chain, P., Ahlgren, N.A., Arellano, A., Coleman, M., Hauser, L., Hess, W.R., et al., 2003. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature, 424(6952):1042–1047. [doi:10.1038/nature01947]

    Article  CAS  PubMed  Google Scholar 

  • Semsey, S., Blaha, B., Koles, K., Orosz, L., Papp, P.P., 2002. Site-specific integrative elements of rhizobiophage 16-3 can integrate into proline tRNA (CGG) genes in different bacterial genera. J. Bacteriol., 184(1):177–182. [doi:10.1128/JB.184.1.177-182.2002]

    Article  CAS  PubMed  Google Scholar 

  • Syvanen, M., 1994. Horizontal gene transfer: evidence and possible consequences. Annu. Rev. Genet., 28(1):237–261. [doi:10.1146/annurev.ge.28.120194.001321]

    CAS  PubMed  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24(8):1596–1599. [doi:10.1093/molbev/msm092]

    Article  CAS  PubMed  Google Scholar 

  • Tian, Y.J., Yang, H., Wu, X.J., Li, D.T., 2005. Molecular analysis of microbial community in a groundwater sample polluted by landfill leachate and seawater. J. Zhejiang Univ.-Sci. B, 6(3):165–170. [doi:10.1631/jzus.2005.B0165]

    Article  PubMed  Google Scholar 

  • Tuanyok, A., Leadem, B.R., Auerbach, R.K., Beckstrom-Sternberg, S.M., Beckstrom-Sternberg, J.S., Mayo, M., Wuthiekanum, V., Brettin, T.S., Nierman, W.C., Peacock, S.J., et al., 2008. Genomic islands from five strains of Burkholderia pseudomallei. BMC Genomics, 9(1):566. [doi:10.1186/1471-2164-9-566]

    Article  PubMed  Google Scholar 

  • van Aartsen, J.J., 2008. The Klebsiella pheV tRNA locus: a hotspot for integration of alien genomic islands. Biosci. Horiz., 1(1):51–60. [doi:10.1093/biohorizons/hzn006]

    Article  Google Scholar 

  • Wang, X.S., Zhu, J., Mansueto, L., Bruskiewich, R., 2005. Identification of candidate genes for drought strees tolerance in rice by the integration of a genetic (QTL) map with the rice genome physical map. J. Zhejiang Univ.-Sci. B, 6(5):382–388. [doi:10.1631/jzus.2005.B0382]

    Article  PubMed  Google Scholar 

  • Williams, K.P., 2002. Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic. Acids Res., 30(4):866–875. [doi:10.1093/nar/30.4.866]

    Article  CAS  PubMed  Google Scholar 

  • Xu, X.Z., Liu, Q.B., Fan, L.J., Cui, X.F., Zhou, X.P., 2008. Analysis of synonymous codon usage and evolution of begomoviruses. J. Zhejiang Univ.-Sci. B, 9(9):667–674. [doi:10.1631/jzus.B0820005]

    Article  CAS  PubMed  Google Scholar 

  • Zhaxybayeva, O., Gogarten, J.P., Charlebois, R.L., Doolittle, W.F., Papke, R.T., 2006. Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res., 16(9):1099–1108. [doi:10.1101/gr.5322306]

    Article  CAS  PubMed  Google Scholar 

  • Zinser, E.R., Johnson, Z.I., Coe, A., Karaca, E., Veneziano, D., Chisholm, S.W., 2007. Influence of light and temperature on Prochlorococcus ecotype distributions in the Atlantic Ocean. Limnol. Oceanogr., 52(5):2205–2220.

    Google Scholar 

  • Zuker, M., 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic. Acids Res., 31(13):3406–3415. [doi:10.1093/nar/gkg595]

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhu.

Additional information

Project (No. 2006AA10A102) supported by the National High-Tech R & D Program (863) of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Hl., Zhu, J. Analysis of the 3′ ends of tRNA as the cause of insertion sites of foreign DNA in Prochlorococcus . J. Zhejiang Univ. Sci. B 11, 708–718 (2010). https://doi.org/10.1631/jzus.B0900417

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0900417

Key words

CLC number

Navigation