Skip to main content
Log in

Preliminary screening and identification of stem cell-like sphere clones in a gallbladder cancer cell line GBC-SD

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

This paper aims to screen and identify sphere clone cells with characteristics similar to cancer stem cells in human gallbladder cancer cell line GBC-SD. GBC-SD cells were cultured in a serum-free culture medium with different concentrations of the chemotherapeutic drug cisplatin for generating sphere clones. The mRNA expressions of stem cell-related genes CD133, OCT-4, Nanog, and drug resistance genes ABCG2 and MDR-1 in sphere clones were detected by quantitative real-time polymerase chain reaction (PCR). Stem cell markers were also analyzed by flow cytometry and immunofluorescent staining. Different amounts of sphere clones were injected into nude mice to test their abilities to form tumors. Sphere clones were formed in serum-free culture medium containing cisplatin (30 μmol/L). Flow cytometry results demonstrated that the sphere clones expressed high levels of stem cell markers CD133+ (97.6%) and CD44+ (77.9%) and low levels of CD24+ (2.3%). These clones also overexpressed the drug resistance genes ABCG2 and MDR-1. Quantitative real-time PCR showed that sphere clones expressed stem cell genes Nanog and OCT-4 284 and 266 times, respectively, more than those in the original GBC-SD cells. Immunofluorescent staining showed that sphere clones overexpressed OCT-4, Nanog, and SOX-2, and low expressed MUC1 and vimentin. Tumor formation experiments showed that 1×103 sphere clone cells could induce much larger tumors in nude mice than 1×105 GBC-SD cells. In conclusion, sphere clones of gallbladder cancer with stem cell-like characteristics can be obtained using suspension cultures of GBC-SD cells in serum-free culture medium containing cisplatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., Clarke, M.F., 2003. Prospective identification of tumorigenic breast cancer cells. PNAS, 100(7):3983–3988. [doi:10.1073/pnas.0530291100]

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.L., Huang, Z.Q., Zhou, N.X., Zhang, W.Z., Huang, X.Q., Duan, W.D., Liu, R., Liu, Y., 2007. Clinical analysis of 110 patients with primary gallbladder carcinoma. Chin. J. Oncol., 29(9):704–706.

    Google Scholar 

  • Chumsri, S., Burger, A.M., 2008. Cancer stem cell targeted agents: therapeutic approaches and consequences. Curr. Opin. Mol. Ther., 10(4):323–333.

    PubMed  CAS  Google Scholar 

  • Clarke, M.F., Dick, J.E., Dirks, P.B., Eaves, C.J., Jamieson, C.H., Jones, D.L., Visvader, J., Weissman, I.L., Wahl, G.M., 2006. Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res., 66(19):9339–9344. [doi:10.1158/0008-5472.CAN-06-3126]

    Article  PubMed  CAS  Google Scholar 

  • de Groen, P.C., Gores, G.J., LaRusso, N.F., Gunderson, L.L., Nagorney, D.M., 1999. Biliary tract cancers. N. Engl. J. Med., 341(18):1368–1378. [doi:10.1056/NEJM199910283411807]

    Article  PubMed  Google Scholar 

  • Fillmore, C., Kuperwasser, C., 2007. Human breast cancer stem cell markers CD44 and CD24: enriching for cells with functional properties in mice or in man? Breast Cancer Res., 9(3):303. [doi:10.1186/bcr1673]

    Article  PubMed  Google Scholar 

  • Gilbert, C.A., Ross, A.H., 2009. Cancer stem cells: cell culture, markers, and targets for new therapies. J. Cell. Biochem., 108(5):1031–1038. [doi:10.1002/jcb.22350]

    Article  PubMed  CAS  Google Scholar 

  • Hadnagy, A., Gaboury, L., Beaulieu, R., Balicki, D., 2006. SP analysis may be used to identify cancer stem cell populations. Exp. Cell Res., 312(19):3701–3710. [doi:10.1016/j.yexcr.2006.08.030]

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, N., Navarro-Alvarez, N., Soto-Gutierrez, A., Kawamoto, H., Kondo, Y., Yamatsuji, T., Shirakawa, Y., Naomoto, Y., Tanaka, N., 2008. Cancer stem cell research: current situation and problems. Cell Transplant., 17(1–2):19–25.

    Article  PubMed  Google Scholar 

  • Li, H.Z., Yi, T.B., Wu, Z.Y., 2008. Suspension culture combined with chemotherapeutic agents for sorting of breast cancer stem cells. BMC Cancer, 8(1):135. [doi:10.1186/1471-2407-8-135]

    Article  PubMed  Google Scholar 

  • Ma, S., Lee, T.K., Zheng, B.J., Chan, K.W., Guan, X.Y., 2008. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene, 27(12):1749–1758. [doi:10.1038/sj.onc.1210811]

    Article  PubMed  CAS  Google Scholar 

  • Moserle, L., Ghisi, M., Amadori, A., Indraccolo, S., 2010. Side population and cancer stem cells: therapeutic implications. Cancer Lett., 288(1):1–9. [doi:10.1016/j.canlet.2009.05.020]

    Article  PubMed  CAS  Google Scholar 

  • Petersen, O.W., Nielsen, H.L., Gudjonsson, T., Villadsen, R., Rank, F., Niebuhr, E., Bissell, M.J., Ronnov-Jessen, L., 2003. Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am. J. Pathol., 162(2):391–402. [doi:10.1016/S0002-9440(10) 63834-5]

    Article  PubMed  CAS  Google Scholar 

  • Ponti, D., Costa, A., Zaffaroni, N., Pratesi, G., Petrangolini, G., Coradini, D., Pilotti, S., Pierotti, M.A., Daidone, M.G., 2005. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res., 65(13):5506–5511. [doi:10.1158/0008-5472.CAN-05-0626]

    Article  PubMed  CAS  Google Scholar 

  • Puré, E., 2009. The road to integrative cancer therapies: emergence of a tumor-associated fibroblast protease as a potential therapeutic target in cancer. Expert Opin. Ther. Tar., 13(8):967–973. [doi:10.1517/14728220903103841]

    Article  Google Scholar 

  • Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., Dirks, P.B., 2004. Identification of human brain tumour initiating cells. Nature, 432(7015):396–401. [doi:10.1038/nature03128]

    Article  PubMed  CAS  Google Scholar 

  • Vander Griend, D.J., Karthaus, W.L., Dalrymple, S., Meeker, A., DeMarzo, A.M., Isaacs, J.T., 2008. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res., 68(23):9703–9711. [doi:10.1158/0008-5472.CAN-08-3084]

    Article  Google Scholar 

  • Wang, M., Qin, R.Y., Shen, M., Jiang, J.X., Hu, J., Du, Z.Y., Shi, J.C., 2009. Cancer stem cell marker CD24, CD44, ESA and CD34 expression in biliary tract tumors. Chin. J. Exp. Surg., 26(12):1607–1609.

    CAS  Google Scholar 

  • Yu, S.C., Ping, Y.F., Yi, L., Zhou, Z.H., Chen, J.H., Yao, X.H., Gao, L., Wang, J.M., Bian, X.W., 2008. Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett., 265(1):124–134. [doi:10.1016/j.canlet.2008.02.010]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-jin Ma.

Additional information

The two authors contributed equally to this work

Project (No. 30672056) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Bb., Wu, Sj., Zong, Hj. et al. Preliminary screening and identification of stem cell-like sphere clones in a gallbladder cancer cell line GBC-SD. J. Zhejiang Univ. Sci. B 12, 256–263 (2011). https://doi.org/10.1631/jzus.B1000303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1000303

Key words

CLC number

Navigation