Skip to main content
Log in

Plant evolution and endemism in Andean South America: An introduction

  • Published:
The Botanical Review Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2002

Abstract

Andean South America, including the adjacent lowland environments, can be evaluated in reference to the patterns and processes that characterize plant diversity, evolution, and distribution. Although its ecological complexity is bewildering and the evolutionary and geological history is convoluted and poorly understood, progress can be made by testing the relationship of known processes and paleoevents to patterns of diversification and distribution.

Plant diversity patterns can be quantified and mapped in order to permit the study of linkages to environmental parameters and to past speciation and extinction processes. Such studies show the importance of dispersal barriers and long altitudinal gradients for the evolution of Andean plants. Phylogenetic studies allow for the tying of these processes to the timing of connections from the Andes to adjacent tropical forests, grasslands, and deserts, to other highlands in South America, or to other continents. They can also reveal temporal relationships among a variety of plant lineages, allowing for the identification of basal groups, of paleoendemics, and of the recently derived neoendemics. The special places in South America that have high representation of these restricted-range taxa can be better understood as a result. In the Andean context, these are often located in isolated habitat islands, with moisture regimes ranging from arid to perhumid.

These patterns allow the development of conservation actions that respond to the presence of special places for plant diversification and of special species that require immediate attention. Further research will include the documentation of patterns at ever-finer spatial resolutions, to better match our biodiversity databases with the topographical and ecological features found in South America. The phylogenetics of plant molecular and morphological characters provide a necessary evolutionary framework that can then be compared to processes identified as important among animal and fungi lineages. For Andean South America, coevolution of plant and animal species is an important source of additional complexity, while trends of evolution to occupy drier and/or higher environments appear in numerous lineages. Anthropogenic influences on these patterns and processes are little understood, but humans have affected and will continue to shape the composition, diversity, and geography of South American biota.

Resumen

La Sudamérica andina, y los ambientes adyacentes de las tierras bajas, pueden evaluarse con referencia a los patrones y procesos que caracterizan la diversidad, evolución, y distribución de sus plantas. Si bien existe una complejidad ecológica desconcertante y la historia evolutiva y geológica es convoluta y poco entendida, se puede progresar por medio del estudio de las relaciones de los procesos conocidos y los paleoeventos con patrones de diversificación y distribución.

Los patrones de la diversidad de plantas se pueden cuantificar e ilustrar en mapas para permitir el estudio de los enlaces con los parámetros medioambientales y con los procesos pasados de especiación y extinción. Tales estudios muestran la importancia de las barreras de dispersión y los gradientes altitudinales grandes para la evolución de las plantas andinas. Los estudios filogenéticos permiten enlazar estos procesos a la secuencia de eventos relacionada a la conexión de los Andes con los bosques tropicales adyacentes, los pajonales y desiertos, con otras áreas montañosas de Sudamérica, o con otros continentes. También pueden revelar las relaciones temporales entre una variedad de linajes de plantas, permitiendo la identificación de grupos basales, de paleoendémicos, y de los neoendémicos derivados recientemente. Como resultado se puede entender mejor los sitios especiales en Sudamérica que tienen una representación alta de estos taxones con áreas de distribución restringidas. En el contexto andino, estos sitios se encuentran a menudo en hábitats de islas aisladas, con regímenes de humedad que varían de árido a perhúmedo.

Estos patrones permiten el desarrollo de acciones de conservación que responden a la presencia de sitios especiales para la diversificación de las plantas y de especies especiales que requieren una atención inmediata. Investigación más a fondo induirá la documentación de patrones a resoluciones espaciales más finas, para una mejor comparación de nuestras bases de datos de biodiversidad con las caracteristícas topográficas y ecológicas que se encuentran en Sudamérica. La filogenia de los carácteres moleculares y morfológicos de las plantas proveen un marco evolutivo necesario que se podría comparar con los procesos de identificados en linajes de animales y hongos. Para la Sudamérica andina, la coevolución entre las especies de plantas y animales es una fuente importante de complejidad adicional, mientras que la tendencia evolutiva a ocupar ambientes más secos y/o más altos aparece en varios linajes. La influencia humana sobre estos patrones y procesos es poco entendida, pero ha afectado y continuará influenciando la composición, la diversidad, y la geografía de la biota sudamericana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alpert, P., E. Bone &C. Holzapfel. 2000. Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect. Pl. Ecol. Evol. & Syst. 3(1): 52–66.

    Article  Google Scholar 

  • Alroy, J. 2001. A multispecies overkill simulation of the end-Pleistocene megafaunal mass extinction. Science 292: 1893–1896.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, S. 1994. Area and endemism. Quart. Rev. Biol. 69: 451–471.

    Article  Google Scholar 

  • Arroyo, M. T. K., R. Rozzi, J. A. Simonetti, P. Marquet &M. Salaberry. 1999. Central Chile. Pp. 160–171in R. A. Mittermeier, N. Myers, P. Robles Gil & C. G. Mittermeier, Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions. Cemex, Mexico City.

    Google Scholar 

  • Barton, N. H. &B. Charlesworth. 1984. Genetic revolutions, founder effects and speciation. Annual Rev. Ecol. Syst. 15: 133–164.

    Article  Google Scholar 

  • Behrensmeyer, A. K., J. D. Damuth, W. A. DiMichele, R. Potts, H.D. Sues & S. L. Wing (eds.) 1992. Terrestrial ecosystems through time: Evolutionary paleoecology of terrestrial plants and animals. Univ. of Chicago Press, Chicago.

    Google Scholar 

  • Berry, P. E. 1982. The systematics and evolutionof Fuchsia sect.Fuchsia (Onagraceae). Ann. Missouri Bot. Gard. 69: 1–198.

    Article  Google Scholar 

  • —,O. Huber &B. K. Holst. 1995. Floristic analysis and phytogeography. Pp. 161–192in P. E. Berry, B. K. Holst & K. Yatskievych (eds.), Flora of the Venezuelan Guyana, 1: Introduction. Missouri Botanical Garden, Saint Louis; Timber Press, Portland, OR.

    Google Scholar 

  • Brako, L. & J. L. Zarucchi. 1993. Catalogue of the flowering plants and gymnosperms of Peru. Monogr. Syst. Bot., 45. Missouri Bot. Gard., Saint Louis.

  • Brown, J. H. &M. V. Lomolino. 1998. Biogeography. Ed. 2. Sinauer Assoc., Sunderland, MA.

    Google Scholar 

  • Burnham, R. J. &A. Graham. 1999. The history of neotropical vegetation: New developments and status. Ann. Missouri Bot. Gard. 86: 546–589.

    Article  Google Scholar 

  • Chanderbali, A. S., H. van der Werff &S. S. Renner. 2001. The relationships and historical biogeography of Lauraceae: Evidence from the chloroplast and nuclear genomes. Ann. Missouri Bot. Gard. 88: 104–134.

    Article  Google Scholar 

  • Churchill, S. P., H. Balslev, E. Forero &J. L. Luteyn (eds.) 1995. Biodiversity and conservation of neotropical montane forests. New York Bot. Gard., Bronx.

    Google Scholar 

  • Cuarón, A. D. 2000. Effects of land-cover changes in mammals in a neotropical region: A modelling approach. Conservation Biol. 14: 1676–1692.

    Article  Google Scholar 

  • Daly, D. C. &J. D. Mitchell. 2000. Lowland vegetation of tropical South America. Pp. 391–453in D. L. Lentz (ed.), An imperfect balance: Landscape transformations in the Precolumbian Americas. Columbia Univ. Press, New York.

    Google Scholar 

  • Davis, S. D., V. H. Heywood, O. Herrera- MacBryde, J. Villa- Lobos &A. C. Hamilton (eds.) 1997. Centres of plant diversity: A guide and strategy for their conservation, 3: The Americas. WWF & IUCN, Cambridge, England.

    Google Scholar 

  • Dillehay, T. D. 1997. Monte Verde: A Late Pleistocene settlement in Chile, 2: The archaeological context and interpretation. Smithsonian Inst. Press, Washington, D.C.

    Google Scholar 

  • Dinerstein, E., D. M. Olson, D. J. Graham, A. L. Webster, S. A. Primm, M. B. Bookbinder &G. Ledec. 1995. A conservation assessment of the terrestrial ecoregions of Latin America and the Caribbean. World Bank, Washington, DC.

    Google Scholar 

  • Endler, J. A. 1982a. Pleistocene forest refuges: Fact or fancy. Pp. 641–657in G. T. Prance (ed.), Biological diversification in the Tropics. Columbia Univ. Press, New York.

    Google Scholar 

  • — 1982b. Problems in distinguishing historical from ecological factors in biogeography. Amer. Zool. 22: 441–152.

    Google Scholar 

  • Fritsch, P. W. 1999. Phylogeny ofStyrax based on morphological characters, with implications for biogeography and infrageneric classification. Syst. Bot. 24: 356–378.

    Article  Google Scholar 

  • Funk, V. A. &M. F. Zermoglio. 1999. A revision ofChrysactinium (Compositae: Liabeae). Syst. Bot. 24: 323–338.

    Article  Google Scholar 

  • Gentry, A. H. 1982a. Neotropical floristic diversity: Phytogeographical connections between Central and South America, Pleistocene climate fluctuations, or an accident of the Andean orogeny? Ann. Missouri Bot. Gard. 69: 557–593.

    Article  Google Scholar 

  • — 1982b. Phytogeographic patterns as evidence for a Chocó refuge. Pp. 112–136in G. T. Prance (ed.), Biological diversification in the Tropics. Columbia Univ. Press, New York.

    Google Scholar 

  • — 1986. Endemism in tropical versus temperate communities. Pp. 153–181in M. E. Soulé (ed.), Conservation biology: The science of scarcity and diversity. Sinauer Assoc., Sunderland, MA.

    Google Scholar 

  • — 1992. Bignoniaceae, II: Tribe Tecomeae. Fl. Neotrop. Monogr. 25(2). New York Bot. Gard., Bronx.

    Google Scholar 

  • — 1995. Patterns of diversity and floristic composition in neotropical montane forests. Pp. 103–126in S. P. Churchill, H. Balslev, E. Forero & J. L. Luteyn (eds.), Biodiversity and conservation of neotropical montane forests. New York Bot. Gard., Bronx.

    Google Scholar 

  • Gregory Wodzicki, K. M. 2000. Uplift history of the Central and Northern Andes: A review. Geol. Soc. Amer. Bull. 112: 1091–1105.

    Article  Google Scholar 

  • Hallam, A. 1994. An outline of Phanerozoic biogeography. Oxford Univ. Press, Oxford.

    Google Scholar 

  • Halling, R. E. 2001. Ectomycorrhizae: Co-evolution, significance, and biogeography. Ann. Missouri Bot. Gard. 88: 5–13.

    Article  Google Scholar 

  • Henderson, A., S. P. Churchill &J. L. Luteyn. 1991. Neotropical plant diversity: Are the Northern Andes richer than the Amazon Basin? Nature 351: 21–22.

    Article  Google Scholar 

  • Hoffmann J., A. &O. Herrera- MacBryde. 1997. Mediterranean region and La Campana National Park, Central Chile. Pp. 536–541in S. D. Davis, V. H. Heywood, O. Herrera-MacBryde, J. VillaLobos & A. C. Hamilton (eds.), Centres of plant diversity: A guide and strategy for their conservation, 3: The Americas. IUCN, Cambridge, England.

    Google Scholar 

  • Hopkinson, P., J. M. J. Travis, J. Evans, R. D. Gregory, M. G. Telfer &P. H. Williams. 2001. Flexibility and the use of indicator taxa in the selection of sites for nature reserves. Biodiv. & Conserv. 10: 271–285.

    Article  Google Scholar 

  • Huber, O., R. Duno, R. Riina, F. Stauffer, L. Pappaterra, A. Jiménez, S. Llamozas &G. Orsini. 1998. Estado actual del conocimiento de la flora en Venezuela. Ministerio del Ambiente y de los Recursos Naturales Renovables (MARNR), Caracas.

    Google Scholar 

  • IUCN. 2000. IUCN Guidelines for the prevention of biodiversity loss caused by alien invasive species. Approved by the 51st Meeting of the IUCN Council, February 2000. http://www.iucn.org/themes/ ssc/pubs/policy/invasivesEng.htm.

  • Jiggins, C. D. &J. Mallet. 2000. Bimodal hybrid zones and speciation. Trends Ecol. Evol. 15: 250–255.

    Article  PubMed  Google Scholar 

  • Jørgensen, P. M. & S. LeónYánez (eds.). 1999. Catalogue of the vascular plants of Ecuador. Monogr. Syst. Bot., 75. Missouri Bot. Gard., Saint Louis.

  • Knapp, S. 1989. A revision of theSolanum nitidum group (sectionHolophylla pro parte): Solanaceae. Bull. Brit. Mus. (Nat. Hist.), Bot. 19: 63–112.

    Google Scholar 

  • — 1991. A cladistic analysis of theSolanum sessile species group (sectionGeminata pro parte: Solanaceae). Bot. J. Linn. Soc. 106: 73–89.

    Article  Google Scholar 

  • —,G. Davidse &M. Sousa S. 2001. Proyectos florísticos hoy y mañana: Su importancia en la sistemática y la conservación. Pp. 331–358in H. M. Hernández, A. N. García Aldrete, F. Alvarez & M. Ulloa (eds.), Enfoques contemporáneos para el estudio de la biodiversidad. Instituto de Biología, UNAM, Mexico City.

    Google Scholar 

  • Kremen, C. &T. Ricketts. 2000. Global perspectives on pollination disruptions. Conservation Biol. 14: 1226–1228.

    Article  Google Scholar 

  • Kruckeberg, A. R. &D. Rabinowitz. 1985. Biological aspects of endemism in higher plants. Annual Rev. Ecol. Syst. 16:447–479.

    Article  Google Scholar 

  • Lavin, M. &M. Luckow. 1993. Origins and relationships of tropical North America in the context of the boreotropics hypothesis. Amer. J. Bot. 80: 1–14.

    Article  Google Scholar 

  • Lentz, D. L. (ed.) 2000. An imperfect balance: Landscape transformations in the Precolumbian Americas. Columbia Univ. Press, New York.

    Google Scholar 

  • León, B. &K. R. Young. 1996a. Aquatic plants of Peru: Diversity, distribution and conservation. Biodiv. & Conserv. 5: 1169–1190.

    Article  Google Scholar 

  • ——. 1996b. Distribution of pteridophyte diversity and endemism in Peru. Pp. 77–91in J. M. Camus, M. Gibby & R. J. Johns (eds.), Pteridology in perspective. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Levin, D. A. 2000. The origin, expansion, and demise of plant species. Oxford Univ. Press, New York.

    Google Scholar 

  • Lindberg, A. B. &J. M. Olesen. 2001. The fragility of extreme specialization:Passiflora mixta and its pollinating hummingbirdEnsifera ensifera. J. Trop. Ecol. 17: 323–329.

    Article  Google Scholar 

  • Luteyn, J. L. 1992. Páramos: Why study them? Pp. 1–14in H. Balslev & J. L. Luteyn (eds.), Páramo: An Andean ecosystem under human influence. Academic Press, London.

    Google Scholar 

  • — 1999. Páramos: A checklist of plant diversity, geographical distribution, and botanical literature. Mem. New York Bot. Gard. 84: 1–278.

    Google Scholar 

  • — &S. P. Churchill. 2000. Vegetation of the tropical Andes. Pp. 281–310in D. L. Lentz (ed.), An imperfect balance: Landscape transformations in the Precolumbian Americas. Columbia Univ. Press, New York.

    Google Scholar 

  • Marticorena, C. 1990. Contribución a la estadistica de la flora vascular de Chile. Gayana, Bot. 47: 85–113.

    Google Scholar 

  • Martin, P. S. &R. G. Klein (eds.) 1984. Quaternary extinctions: A prehistoric revolution. Univ. of Arizona Press, Tucson.

    Google Scholar 

  • Mittermeier, R. A., N. Myers, P. Robles Gil &C. G. Mittermeier. 1999. Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions. Cemex, Mexico City.

    Google Scholar 

  • Molau, U. 1988. Scrophulariaceae, 1: Calceolarieae. Fl. Neotrop. Monogr. 47. New York Bot. Gard., Bronx.

    Google Scholar 

  • Moraes M. &S. Beck. 1992. Diversidad florística de Bolivia. Pp. 73–111in M. Marconi (ed.), Conservación de la diversidad biológica en Bolivia. Centra de Datos para la Conservación, La Paz.

    Google Scholar 

  • Moritz, C., J. L. Patton, C. J. Schneider &T. B. Smith. 2000. Diversification of rainforest faunas: An integrated molecular approach. Annual Rev. Ecol. Syst. 31: 533–563.

    Article  Google Scholar 

  • Mueller, G. M. &R. E. Halling. 1995. Evidence for high biodiversity of Agaricales (Fungi) in neotropical montaneQuercus forests. Pp. 303–312in S. P. Churchill, H. Balslev, E. Forero & J. L. Luteyn (eds.), Biodiversity and conservation of neotropical montane forests. New York Bot. Gard., Bronx.

    Google Scholar 

  • Myers, N. 1980. Conversion of tropical moist forests. National Academy of Sciences, Washington, DC.

    Google Scholar 

  • —,R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca &J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, B. W., C. A. C. Ferreira, M. F. da Silva &M. L. Kawasaki. 1990. Endemism centres, refugia and botanical collection in Brazilian Amazonia. Nature 345: 714–716.

    Article  Google Scholar 

  • Norman, E. 2000. Buddlejaceae. Fl. Neotrop. Monogr. 81. New York Bot. Gard. Press, Bronx.

    Google Scholar 

  • Panero, J. L. 1992. Systematicsof Pappobolus (Asteraceae-Heliantheae). Syst. Bot. Monogr. 36: 1–195.

    Google Scholar 

  • Porter, D. M. 1983. Vascular plants of the Galapagos: Origins and dispersal. Pp. 33–96in R. I. Bowman, M. Berson & A. E. Leviton (eds.), Patterns of evolution in Galapagos organisms. Pacific Division, AAAS, San Francisco.

    Google Scholar 

  • Pyne, S. J. 1995. World fire: The culture of fire on Earth. Holt, New York.

    Google Scholar 

  • Raven, P. H. &D. I. Axelrod. 1974. Angiosperm biogeography and past continental movements. Ann. Missouri Bot. Gard. 61: 539–673.

    Article  Google Scholar 

  • Renner, S. S., G. Clausing &K. Meyer. 2001. Historical biogeography of Melastomataceae: The role of Tertiary migration and long-distance migration. Amer. J. Bot. 88: 1290–1300.

    Article  Google Scholar 

  • Roubik, D. W. 2000. Pollination system adaptability in tropical America. Conservation Biol. 14: 1235–1236.

    Article  Google Scholar 

  • Rutledge, D. T., C. A. Lepczyk, J. Xie &J. Liu. 2001. Spatiotemporal dynamics of endangered species hotspots in the United States. Conservation Biol. 15: 475–487.

    Article  Google Scholar 

  • Sandweiss, D. H., H. McInnis, R. L. Burger, A. Cano, B. Ojeda, R. Paredes, M. C. Sandweiss &M. D. Glascock. 1998. Quebrada Jaguay: Early South American maritime adaptations. Science 281: 1830–1832.

    Article  PubMed  CAS  Google Scholar 

  • Sarmiento, F. O. 1995. Restoration of equatorial Andes: The challenge for conservation of trop-Andean landscapes in Ecuador. Pp. 637–651in S. P. Churchill, H. Balslev, E. Forero & J. L. Luteyn (eds.), Biodiversity and conservation of neotropical montane forests. New York Bot. Gard., Bronx.

    Google Scholar 

  • Savolainen, V., M. F. Fay, D. C. Albach, A. Backlund, M. van den Bank, K. M. Cameron, S. A. Johnson, M. D. Lledo, J.C. Pintaud, M. Powell, M. C. Sheahan, D. E. Soltis, P. S. Soltis, P. Weston, W. M. Whitten, K. J. Wurdack &M. W. Chase. 2000. Phylogeny of the eudicots: A nearly complete familial analysis based onrbcL gene sequences. Kew Bull. 55: 257–309.

    Article  Google Scholar 

  • SBSTTA. 2001. Alien Species That Threaten Ecosystems, Habitats or Species. Recommendation IV/4 of the 6th meeting of the Subsidiary Body on Scientific, Technical and Technological Advice of the Conference of the Parties, Montreal, 12–16 March 2001.

  • Schwartzmann, S., A. Moreira &D. Nepstad. 2000. Rethinking tropical forest conservation: Perils in parks. Conservation Biol. 14: 1351–1357.

    Article  Google Scholar 

  • Simpson, B. 1979. A revision of the genusPolylepis (Rosaceae: Sanguisorbeae). Smithsonian Contrib. Bot. 43: 1–62.

    Google Scholar 

  • Smith, T. B., R. K. Wayne, D. J. Girman & M. W. Bruford. In press. Evaluating the divergence-withgene-flow model in natural populations: The importance of ecotones in rainforests: speciation. In C. Moritz, E. Bermingham & C. Dick (eds.), Rainforests: Past and future. Univ. of Chicago Press, Chicago.

  • Stebbins, G. L. &J. Major. 1965. Endemism and speciation in the California flora. Ecol. Monogr. 35: 1–35.

    Article  Google Scholar 

  • Steyermark, J. A. 1986. Speciation and endemism in the Venezuelan Tepuis. Pp. 317–373in F. Vuilleumier & M. Monasterio (eds.), High altitude tropical biogeography. Oxford Univ. Press, Oxford.

    Google Scholar 

  • Stuessy, T. F., D. J. Crawford, G. J. Anderson &R. J. Jenner. 1998a. Systematics, biogeography and conservation of Lactoridaceae. Perspect. Pl. Ecol. Evol. & Syst. 1/2: 267–290.

    Article  Google Scholar 

  • —,U. Swenson, D. J. Crawford, G. J. Anderson &M. Silva O. 1998b. Plant conservation in the Juan Fernández Islands. Aliso 16: 89–102.

    Google Scholar 

  • Taylor, D. W. 1991. Paleobiogeographic relationships of Andean angiosperms of Cretaceous to Pliocene age. Palaeogeogr. Palaeoclimatol. Palaeoecol. 88: 69–84.

    Article  Google Scholar 

  • — 1995. Cretaceous to Tertiary geologic and angiosperm paleobiogeographic history of the Andes. Pp. 3–9in S. P. Churchill, H. Balslev, E. Forero & J. L. Luteyn (eds.), Biodiversity and conservation of neotropical montane forests. New York Bot. Gard., Bronx.

    Google Scholar 

  • Terborgh, J. &B. Winter. 1983. A method for siting parks and reserves with special reference to Colombia and Ecuador. Biol. Conservation 27: 45–58.

    Article  Google Scholar 

  • Todzia, C. A. 1988. Chloranthaceae:Hedyosmum. Fl. Neotrop. Monogr. 48. New York Bot. Gard., Bronx.

    Google Scholar 

  • Tuomisto, H., K. Ruokolainen, R. Kalliola, A. Linna, W. Danjoy &Z. Rodríguez. 1995. Dissecting Amazonian biodiversity. Science 269: 63–66.

    Article  PubMed  CAS  Google Scholar 

  • Tye, A. 2000. Las plantas vasculares endémicas de Galápagos. Pp. 24–28in R. Valencia, N. Pitman, S. León-Yánez & P. M. Jørgensen (eds.), Libro rojo de las plantas endémicas del Ecuador 2000. Herbario QCA, Pontificia Universidad Católica del Ecuador, Quito.

    Google Scholar 

  • UK Biodiversity Group. 2001. Sustaining the variety of life: 5 years of the UK Biodiversity Action Plan. Department of the Environment, Transport and the Regions, United Kingdom Government, London.

    Google Scholar 

  • Ulloa U., C. &P. M. Jørgensen. 1995. Árboles y arbustos de los Andes del Ecuador. Ed. 2. Ediciones Abya-Yala, Quito.

    Google Scholar 

  • -, -& M. O. Dillon. In prep.Arnaldoa argentea (Barnadesioideae: Asteraceae), a new species and a new generic record for Ecuador.

  • UNEP. 1995. Global biodiversity assessment (V. H. Heywood, exec. ed.). Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Valencia, R., N. Pitman, S. León-Yánez &P. M. Jørgensen (eds.) 2000. Libra rojo de las plantas endémicas del Ecuador 2000. Herbario QCA, Pontificia Universidad Católica del Ecuador, Quito.

    Google Scholar 

  • Van der Hammen, T. &A. M. Cleef. 1986. Development of the high Andean páramo flora and vegetation. Pp. 153–201in F. Vuilleumier & M. Monasterio (eds.), High altitude tropical biogeography. Oxford Univ. Press, Oxford.

    Google Scholar 

  • Villagrán, C. &L. F. Hinojosa. 1997. Historia de los bosques del sur de Sudamérica, Il: Análisis fitogeográfico. Revista Chilena Hist. Nat. 70: 241–267.

    Google Scholar 

  • WCMC. 1992. Global biodiversity: Status of the Earth’s living resources. Chapman and Hall, London.

    Google Scholar 

  • Whitmore, T. C. 1998. An introduction to tropical rain forests. Ed. 2. Oxford Univ. Press, Oxford.

    Google Scholar 

  • Williams, P., D. Gibbons, C. Margules, A. Rebelo, C. J. Humphries, C. Pressey &R. Pressey. 1996a. A comparison of richness hotspots, rarity hotspots and complementary areas for conserving diversity using British birds. Conservation Biol. 10: 155–174.

    Article  Google Scholar 

  • Williams, P. H., G. T. Prance, C. J. Humphries &K. S. Edwards. 1996b. Promise and problems in applying quantitative complementary areas for representing the diversity of some neotropical plants (families Dichapetalaceae, Lecythidaceae, Caryocaraceae, Chrysobalanaceae and Proteaceae). Biol. J. Linn. Soc. 58: 125–157.

    Google Scholar 

  • Young, K. R. 1998. Deforestation in landscapes with humid forests in the Central Andes: Patterns and processes. Pp. 75–97in K. S. Zimmerer & K. R. Young (eds.), Nature’s Geography: New Lessons for Conservation in Developing Countries. Univ. of Wisconsin Press, Madison.

    Google Scholar 

  • — &B. León. 2001. Perú. Pp. 549–580in M. Kappelle & A. D. Brown (eds.), Bosques nublados del neotrópico. INBio, Heredia, Costa Rica.

    Google Scholar 

  • Zimmerer, K. S. &K. R. Young (eds.) 1998. Nature’s geography: New lessons for conservation in developing countries. Univ. of Wisconsin Press, Madison.

    Google Scholar 

  • Zuloaga, F. O., O. Morrone &D. Rodríguez. 1999. Análisis de la biodiversidad en plantas vasculares de la Argentina. Kurtziana 27: 17–167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1663/0006-8101(2002)068[0424:E]2.0.CO;2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, K.R., Ulloa, C.U., Luteyn, J.L. et al. Plant evolution and endemism in Andean South America: An introduction. Bot. Rev 68, 4–21 (2002). https://doi.org/10.1663/0006-8101(2002)068[0004:PEAEIA]2.0.CO;2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1663/0006-8101(2002)068[0004:PEAEIA]2.0.CO;2

Keywords

Navigation